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Abstract

The accuracy of cost estimates is vital during this era of budget constraints. A
key component of this accuracy is regularly updating the cost estimate at completion
(EAC). A 2014 study by the Air Force Cost Analysis Agency (AFCAA) improved the
accuracy of the cost estimate at completion (EAC) for space system contracts. The study
found schedule duration to be a cost driver, but assumed the underlying duration estimate
was accurate. This research attempts to improve the accuracy of the duration estimate
from the AFCAA study. First, the overall accuracy is evaluated with the Mean Absolute
Percent Error (MAPE). Then the duration estimates are analyzed for timeliness to
determine when the methods offer improved accuracy over the status quo. Finally, the
methods are evaluated for reliability (accuracy for contracts with Over-Target-Baselines
(OTBs)). The methods researched here are more accurate, timely, and reliable than the
status quo method. The original objective, to improve the accuracy of the duration
estimates for the cost estimating model, was achieved. The accuracy gains ranged from
2.0% to 13.4% for single contracts, 3.2% to 5.1% for OTB contracts, and 2.9% to 5.2%
for all contracts combined. The accuracy improvement is more pronounced from 0% to
70% completion, with a 4.0% to 7.6% increase in accuracy. Finally, the overall accuracy

improvement for the EAC was 6.5% (24.4% vs. 17.9%).



AFIT-ENV-MS-15-M-177

This thesis is dedicated to my lovely wife. Its completion would not be possible without

her support during the countless hours researching, analyzing, and writing.



Acknowledgments

| would like to express my gratitude to my thesis committee. First and foremost, |
would like to thank my faculty advisor, Lt Col Ritschel; your patience, insight, and
guidance made this research effort less treacherous. 1 would also like to thank Dr. White
for sharing his statistical expertise. Finally, I would like to thank my sponsor, Capt Grant

Keaton, for providing the thesis topic and supporting this research effort.

Shedrick M. Bridgeforth

Vi



Table of Contents

Page

ADSTTACT ... bbbt bt 1\
TabIE OF CONENES ...ttt bbbt nneas vii
LIST OF FIQUIES ...ttt sttt ettt beene e s beenbesneenneas X
LISt OF TADIES ... et XV
L. INEFOTUCTION L.ttt bbbttt 1
GENEIAL ISSUR ...ttt sttt e e ene e nre e e nnes 1
BaCKGIOUNG. ...ttt bbbt 2
Problem STAtEMENT...........oiiee e 3
Research Objective and QUESTIONS ..........cveiieiiriiiieieie e 5
METNOUOIOGY ...ttt bbbt 7
ASSUMPLIONS AN LIMITATIONS .....c.veviviiiiiieiieeeee s 7
TRESIS PIEVIEBW. ...ttt sttt e e st e b e st e sne e seeneesneenne e 8

[1. LITErature REVIEW ......oviiiiiiieiieiieiee ettt bbb e e 10
Chapter OVEIVIEW......c.ueeiiieiecieeeie ettt e ettt e re e taer e reesbeeaesneesres 10
Program Management ........cuei i 10
Earned Value Management Background.............cccoevueiieiicieiic s, 11
Earned Value Management Data............cccoveieiieiecie i 12
Schedule Forecasting: Critical Path Method ...............cccoooiiiiiiic e, 14
Schedule Forecasting: Earned Value Based Methods............ccccooevveieiiciiccecienen, 15
Schedule Forecasting: Linear REGreSSION .........cccvvveiiiiiiieiie e 21
Schedule Forecasting: Time Series ANalYSIS .......ccoveviieiiieiiiie e 22
Schedule Forecasting: Kalman Filter Forecasting Method ..............ccccooviiieiieinne, 44

vii



Schedule Forecasting: Improving the Planned Duration Estimate.................ccc........ 50

Baseline Execution INAeX (BEI) ......cccooiiiiiiiiiiiiiee e 53
SUMMIBIY ...ttt bbb et n e nne s 54
F T\ 1= 1 g o To (o] oo | SR 56
CRAPLEr OVEIVIBW. ... bbbt 56
Data and DAta SOUICE ........ceuiiieiiieiieeie ittt ettt be e sraesteeneesreeee e 56
Data LIMITATIONS ....eeiuiiiiieieieie ettt e sreebeeneesreenne e 60
Forecasting Method: EVM Index Based ...........cccviiiiiiiiiiciiieses e 60
Forecasting Method: EVM Index Based plus Time Series Analysis ...........cccccevenee. 61
Forecasting Method: Linear REQIESSION.......cccoeiviiireiirieieiee e 66
Forecasting Method: Kalman Filter Forecast Method............ccccccoviviiviiiencne e, 67
Forecasting Method: Independent Duration Estimate (IDE)............ccocoovvviiiiieiennn, 68
Evaluating the Forecasting Models (Accuracy, Timeliness, and Reliability) ............ 70
SUMMIBIY ... b et b et b et b e e nneenne s 73
V. RESUILS aNd DISCUSSION .....veeuieiieieiieiiesiisieeieeree ettt st sre s 75
Chapter OVEIVIEW......c.ueiiiieie ittt ettt et s et e st e te et e raesbeeaesneenre s 75
Forecast Model Accuracy RESUILS ...........coovviiiiiiiece e, 75
Forecast Model TimeliNeSS........cocv i 104
Validating the Cost Estimating Model ............c.cooveviiiiiiciecccee e, 109
SUIMMIAIY ..ttt ettt e st e e s st e e sab e e e s ab e e e s bt e e e esb e e e bbeeesbbeeanseeeanneeeanbeeeas 114
V. Conclusions and ReCOMMENTALIONS .........ccveiverieiieiieie e seesie e ee e e 116
Investigative QUESLIONS ANSWEIEA ..........ccovveiieeiieiie e 116
RECOMMENTALIONS ...t et nneas 118
Recommendations for Future RESEAICN...........ccevieiiiiiiie e 119



Appendix A:
Appendix B:
Appendix C:
Appendix D:

Bibliography

Data AQJUSTMENTS ....c.veeieiieieee et 121
Levene Tests for Tukey-Kramer HSD ..........ccccooviieiiiene i, 133
Duration Accuracy Results (Individual Contracts) ..........ccccceveevveeiveinnene, 140
Regression Analysis OQULPULS .........ccveiiiviiiiiriseceee e, 150
.................................................................................................................... 183

187



Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:

Figure 11

Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:

Figure 21:

List of Figures

Page

Cost Estimation, Systems Development, and Risk Management .................... 12
EVM Measurements OVEr TIME .......ccviiiiiieieieiese e 17
EAC and EDAC OVEI TIME.....oiiiiiiiiiiiiieiieieiee sttt 18
Earned Schedule CONCEPL........ooviiiiiiiiiieeee s 19
ACF and PACFE PlIOL ..o 25
CPITIme SerieS Graph.......ccoovoiiiiiiiesieeee e 30
Box-Jenkins Methodology FIOWChart ... 35
AR Model Parameter EStIMAtES .........c.coovriiieiiieiese e 39
AR MOUEI SUMMAIY ... 40
Plots of ACF and PACF for ReSiduals...........ccccceviriiiiiiiiieicenc e 42
Recursive Learning Cycle of the Kalman Filter...........coccoovvviiieniniiinns 46
Kalman Filter FOreCasting ........ccoououiiiiiieiiie e 49
Schedule SHP Method ..o 52
EVM Central Repository OVEIVIEW ..........ccccoierieriniininiesieieee e 58
CPI Time SerieS Graph........cooiiiiiiiieieese e 62
Plots of ACF and PACF (Stationary) .........ccceoeeerenenenesieeeieseesie e 63
Plots of ACF and PACF (potential non-stationary) ...........cccccoevenenenennnnnas 63
Plots of ACF and PACF for ReSiduals..........ccccoerininiiiiiiiecenc s 65
KEVM LITE ©...oooeiiieeieee ettt nna e anee e 68
Duration MAPE OVEI TIME ....ccuiiiiiiiiiieieieie e 71
Tukey-Kramer HSD - All CONIaCtS ........cccooeieieiiniiierieeeeese s 77



Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:

Figure 44:

Tukey-Kramer HSD - IDE Data Set (7 out of 10 contracts) ........cccccceeveruenee. 80
Tukey-Kramer HSD - NO OTB......cccoiiiiiieiee e 82
Tukey-Kramer HSD - No OTB (alpha = 0.15) ......ccccoiiiniiiiiicicecece 82
Tukey-Kramer HSD (OTB).....ccoiiiiiiieiie e 85
Tukey-Kramer HSD - Short DUFatioN ............cccooeiiiinininiecese e 88
Tukey-Kramer HSD - Short Duration (alpha = 0.27) ......cccoevrveiieenenieceeen 88
Tukey-Kramer HSD - Medium DUration ............cc.coovieiinieienene e 91
Tukey-Kramer HSD - Long DUration .........cccoeeveiininenineeenese s 93
Tukey-Kramer HSD - Long Duration (Alpha = 0.10).......cccccceviniiinininiene. 93
CPRIPD ettt bbb ne e 99
IDE - IMS AcCUraCy DeIta........ccooiiiiiiieieieseeeecee e 103
MAPE for EAC Forecasting Methods vs. % Complete........cccocvvniivnnnne. 112

MAPE for EAC Forecasting Methods vs. % Complete [Truncated WGS] . 113

Average Cost Estimate Error (in $B FY15) .....cccooviiiiiiiniiiee e 114
Levene Test (All CONIACTS) .....oiuviiiieiiieeie s 133
Levene Test (IDE CONIACTS)........cieririeiiieie et 134
Levene Test (NON-OTB CONLrACES) .....cvvververierierieniisiesieeeee s 135
Levene Test (OTB CONLrACES) ......ovveivirieiiieie et 136
Levene Test - Short Duration (GPS OCX).......cccoviiriniiniiieienc e 137
Levene Test - Medium Duration (NAVSTAR GPS, MUOS, & WGS)....... 138
Levene Test - Long Duration (AEHF & SBIRS) .......cccccviiiiiiiiince 139
NAVSTAR GPS (FA8807-06-C-0001) Accuracy over TIime .........cc.coeuee.e. 140
NAVSTAR GPS (FA8807-06-C-0003) Accuracy over TIime .........cc.cceueee. 141

Xi



Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:

Figure 67:

NAVSTAR GPS (FA8807-06-C-0004) Accuracy over TIMe .........cccceenene 142
GPS OCX (FA8807-08-C-0001) Accuracy OVer TIMe.......cccccerverererennenn. 143
GPS OCX (FA8807-08-C-0003) Accuracy over TIMe........ccccvreereereennenn 144
WGS (FA8808-06-C-0001) Accuracy OVer TIME.......cccceveeeveeieesiveesieaienens 145
WGS (FA8808-10-C-0001) Accuracy Results...........ccceevveeiiieiieiieesieiiens 146
MUQOS (N00039-04-C-2009) Accuracy over TIMe .......ccccevvvevveereeiiveninnns 147
AEHF (F04701-02-C-0002) Accuracy Results over TIMe ........ccccoevvevvennnne 148
SBIRS (F04701-95-C-0017) Accuracy Results over TImMe.........cccccvevveenenne. 149
Regression Output - CPR PD (Status qUO) .......ccccoererirerinieienese e 150
Leverage Plot - CPR PD (StatuS QUO) ........ooververieriiriisiesiieieeie e 151
Residual Plot - CPR PD (StatuS QUO).......cceveieierienieniesieeiieieie e 151
C00K'S D - CPR PD (StatuS QUO) ....c.veuveieieieiesiesiesiesieeee e 152
Residuals Histogram & Shapiro-Wilk Normality Test (CPR PD)............... 152
Studentized Residuals Check for Outliers (CPR PD) ......cccccooviiiiiiniiiininns 153
MAPE - CPR PD (StatuS QUO) ......coueruieiieieieiesie s 154
Regression Output (IMS MAPES).......cccuiiiieieiere e 155
Leverage Plot (IMS MAPES) .......cooiiiiiiiieie et 156
Residuals P10t (IMS MAPES)........cccouiiiiiieeie et 156
Co0k's D (IMS MOdel MAPES) .....c.coiiiiiiiiieiese et 157
Residuals Histogram & Shapiro-Wilk Normality Test (IMS MAPEsS)........ 157
Studentized Residuals Check for Outliers (IMS MAPES) .......ccccccocvinininns 158
MAPE for Predicting IMS Model ACCUIaCY .........ccovvvrirririiiene e 159
Regression Output (IDE MAPES) ......ccccviiiiiiieieseieseeeeee e 160

xii



Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:

Figure 90:

Leverage PIOt (IDE MAPES).......ccooiiiiiiieiesie e 161
Residuals P10t (IDE MAPES) .......cccoiiiiiiieniiee e 161
COO0K'S D (IDE MAPES) ....coiiiiiiieiieeiie ettt st 162
Residuals Histogram & Shapiro-Wilk Normality Test (IDE MAPES) ........ 162
Studentized Residuals Check for Outliers (IDE MAPES).........ccccoevervanenne. 163
MAPE for Predicting IDE Model ACCUIACY .........cccovviieieierieienese e 164
Regression Output (IMS MAPE Delta).........cccoceiiiiiiiiiiiiiceese e 165
Leverage Plot (IMS MAPE Delta) .........cccooeieiiniiiiiiieeeese s 166
Residuals Plot (IMS MAPE DElta) .........cccooeiiiiieiiiiiecieee e 166
Co0k's D (IMS MAPE Delta).......cccceiiiiiiiiiiiieseseeeeee e 167
Residuals Histogram & Shapiro-Wilk Test (IMS MAPE Delta) ................. 167
Studentized Residuals Check for Outliers (IMS MAPE Delta) ................... 168
MAPE for Predicting the Accuracy Delta (IMS Models - CPR PD)........... 169
Regression Output #1 (IDE MAPE Delta) ..........cccoverireiiniieiene e 170
Leverage Plots (IDE MAPE DEelta) ........cccooereririniniiieeieesee s 171
Residuals Plot (IDE MAPE Delta) .........ccccooeriniiiiiniieeieeee e 171
C0o0k's D (IDE MAPE DEIta) .......cccoveiiiiieiieniesiesieseeeeee e 172
Residuals Histogram & Shapiro-Wilk Test (IDE MAPE Delta).................. 172
Studentized Residuals Check for Outliers (IDE MAPE Delta).................... 173
MAPE for Predicting the Accuracy Delta (IDE - CPR PD).........ccccccvvnunne. 174
Regression Output #2 (IDE MAPE Delta) .........ccccovvririniniieiese e 175
Leverage Plot (IDE MAPE DElta)........cccoceieiireneniiiiieieeese s 176
Residuals Plot (IDE MAPE Delta) .........cccceoerineieiiniiiseeee e 176

Xiii



Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:

Figure 98:

Co0k's D (IDE MAPE DEIta) .......ccccveieiiiiiiiiiesieeeeeee e 177

Residuals Histogram & Shapiro-Wilk Test (IDE MAPE Delta).................. 177
Studentized Residuals Check for Outliers (IDE MAPE Delta).................... 178
MAPE for Predicting the Accuracy Delta (IDE - CPR PD)........cccccvvivennene 179
Regression Output (IDE - IMS MAPE Delta) .........cccccooiiiiiiciiiiicc 180
Residuals Histogram & Shapiro-Wilk Test (IDE - IMS Delta) ................... 181
Studentized Residuals Check for Outliers (IDE - IMS Delta) ..................... 181
MAPE for Predicting the Accuracy Delta (IDE - IMS MAPE) ................... 182

Xiv



Table 1:

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

Table 8:

Table 9:

Table 10:

Table 11:

Table 12:

Table 13:

Table 14:

Table 15;

Table 16:

Table 17:

Table 18:

Table 19:

Table 20:

Table 21:

List of Tables

Page

Summary of EVIM MeaSUIEMENTES ........cveverieriiiiiiieiiisie s 13
EVM Metrics and FOrMUIAS ...........coooiiiiiiiiiiceeee e 14
Formulas for the Estimate at Completion (EAC) .....cooeveviiieiieiecie e 20
Three Schedule Forecasting Methods. ... 20
Expected Patterns in the ACF and PACF for AR and MA Models................... 37
ARIMA MOodel Parameters.........ccooiiiiiiiiinieieese e 38
Potential ARIMA MOUGEIS........ccoiiiiiiiiieeee e 38
ARIMA Model COMPAIISON ......cviiiiiiiiiisiieeeeee e 41
Kalman Filter Forecasting Model COmponents...........ccccoovvvvieieieiencneseien 47
IMS Analysis (Current Month Compared to Baseling) ..........cccccoceiiiininnnnns 53
Initial Space SyStem Programs ..o 59
Contracts ANAIYZEd.........ccooiiiiiiiie 59
Contracts WithoUt an OTB .........oiiiiiiiieieiee e 60
Contracts with One or More OTB ........coeiiiiiiiiie e 60
List of Performance FaCtOrS..........couiiiiiiieie e 61
Time Series Model COMPATISON .........cviiiieiieieiere et 65
IMS Analysis (Current Month Compared to Baseling) ..........ccccoceviiininnnins 69
Forecast Model Intervals and Overall MAPE ............ccoooiiiiiniic e 71
MAPE - All Contracts (NO IDE MOdEIS) ......coceriiiiiiiiiiieeee e 76
MAPE — IDE Data Set (includes 7 of 10 CONLracts) .........ccccevverererenennsnnes 79
MAPE - Non OTB Group (4 Contracts & 175 Observations)............cc.ccoue.... 81

XV



Table 22:

Table 23:

Table 24:

Table 25:

Table 26:

Table 27:

Table 28:

Table 29:

Table 30:

Table 31:

Table 32:

Table 33:

Table 34:

Table 35:

Table 36:

Table 37:

Table 38:

Table 39:

Table 40:

Table 41;

Table 42:

Table 43:

Table 44

MAPE — OTB Group (6 Contracts & 631 Observations)...........cc.cceverrvereeenne. 84
Most Accurate Model by COoNntract ...........ccceovieiiiiiiiieeee 86
MAPE - Short Duration Contracts (GPS OCX) ......cccecvvviviirienienienieie e 87

MAPE - Medium Duration Contracts (MUOS, NAVSTAR GPS, & WGS) .. 90

MAPE - Long Duration Contracts (AEHF & SBIRS)........ccccccovvivvnivniene. 92
Comparison of Status Quo vs. Most Accurate IMS Model ............cccccoeveneee. 95
WGS (FA8808-10-C-0001) — Index ValUes.........ccooevvveireeiie e 95
Comparison of Status Quo vs. Most Accurate Model with IDE Data............. 96
Regression Analysis Data Set............cvviiiiiiniieseees s 98
CPR PD (Status qQUO) ACCUIACY.......cuuieerrerrereniesiestesiesiesiesseeee e 99
Most Accurate Models - All CONIactS.........cccooeieriiininieeee e 99
Most Accurate Model — IDE Data Set..........cccoovieiinininieieienese s 100
IMS Delta (All CONLFACES) ....voveeiiiieiciisiieie e 101
IDE Delta (7 0f 10 CONEIACES)....cveiveriiiririiiiiiieiesee e 102
IDE — IMS AcCUraCy Delta.........ccccoiiiiiiiiiees e 102
Variables EffeCt 0N ACCUIACY ........ooviiiieiiieiese e 103
MAPE at Time Intervals (All CONracts)........cocovveririniniiieieiee e 106
MAPE at Time Intervals (With IDE Data) ............ccooeverieriiiieienene s 107
MAPE at Time Intervals (With IDE Data) ............ccocevirieriiieieieie e 108
Additional Contracts for Cost Model Validation.............ccccceovverenciinennnn 109
Accuracy Summary for EAC Forecasting Methods...........ccccoocvvveivcieinenee. 111
EAC Forecasting Accuracy — Individual Contracts............cccoevevveveiieninennns 112
Data Adjustments - AEHF (F04701-02-C-0002) .......cccervrvriereererirerieerennns 121

XVi



Table 45:

Table 46:

Table 47:

Table 48:

Table 49

Table 50:

Table 51:

Table 52:

Table 53:

Table 54:

Table 55:

Table 56:

Table 57:

Table 58:

Table 59:

Table 60:

Table 61:

Table 62:

Table 63:

Table 64:

Table 65;

Table 66:

Table 67:

Program: GPS OCX (FA8807-08-C-0001) .....c.ccoveireaieeiieeiiee e eiee e 121
Program: GPS OCX (FA8807-08-C-0003) ........cccueireeriieiieeriee e eieesiee e 121
Months with Missing IDE Data MUOS (N00039-04-C-2009) .........ccccceeuene 122
Data Adjustments - NAVSTAR GPS (FA8807-06-C-0001)........cccccovvrueennnne 122
: Months with Missing IDE Data - NAVSTAR GPS (FA8807-06-C-0001).... 123
Data Adjustments - NAVSTAR GPS (FA8807-06-C-0001)............c...coov..... 124
Data Adjustments - NAVSTAR GPS (FA8807-06-C-0003)................coovv.... 125
Months with Missing IDE Data - NAVSTAR GPS (FA8807-06-C-0003)... 126
Data Adjustments - NAVSTAR GPS (FA8807-06-C-0004).........ccccccervennnne 127
Months with Missing IDE Data - NAVSTAR GPS (FA8807-06-C-0004)... 127
Months with Missing IDE Data — WGS Blk 2 (FA8808-06-C-0001)........... 128
Months with Missing IDE Data - WGS B2FO (FA8808-10-C-0001) .......... 129
Additional Data - SBIRS (F04701-95-C-0017).....ccccccvrerinmnieenieneniesieniens 129
Data Adjustment — SBIRS (F04701-95-C-0017) ...cceevveiveieiieieeie e 129
Months with Missing IDE Data — AEHF (F04701-02-C-0002) .........ccccvve. 130
Data Adjustment — WGS Block 2 (FA8808-06-C-0001) .........cccceervrirurnnne 131
Months with Missing IDE Data - WGS B2FO (FA8808-10-C-0001) .......... 132
NAVSTAR GPS (FA8807-06-C-0001) Accuracy Results............ccoceverrnnnne 140
NAVSTAR GPS (FA8807-06-C-0003) Accuracy Results............ccocervnrnenne 141
NAVSTAR GPS (FA8807-06-C-0004) Accuracy Results.........c.ccocvvvrvennnne 142
GPS OCX (FA8807-08-C-0001) Accuracy Results.........cccocvevviieerreiiesinene. 143
GPS OCX (FA8807-08-C-0003) Accuracy Results..........cccocvveriienininnnne. 144
WGS (FA8808-06-C-0001) Accuracy ReSUItS...........ccovveerireriienieceine, 145

XVii



Table 68:

Table 69:

Table 70:

Table 71:

Table 72:

Table 73:

Table 74:

Table 75;

Table 76:

Table 77:

Table 78:

WGS (FA8808-10-C-0001) Accuracy Results..........cccceevvevieiiieeiieciieeiie 146
MUQOS (N00039-04-C-2009) Accuracy ResUltS ..........ccevvveiveeiieiieeiieeiiens 147
AEHF (F04701-02-C-0002) Accuracy ResultS ..........ccccevveviveiieeiieciec s, 148
SBIRS (F04701-95-C-0017) Accuracy ResUlts.........cccccevvervnieiieneiie s, 149
Breusch-Pagan Test for Heteroscedasticity (CPR PD).......ccccccovoviiviiniennnne 153
Breusch-Pagan Test for Heteroscedasticity (IMS MAPES)........ccccccoevveennne 158
Breusch-Pagan Test for Heteroscedasticity (IDE MAPES) ........cccccoovevvennnne 163
Breusch-Pagan Test for Heteroscedasticity (IMS MAPE Delta) .................. 168
Breusch-Pagan Test for Heteroscedasticity (IDE MAPE Delta)................... 173
Breusch-Pagan Test for Heteroscedasticity (IDE MAPE Delta)................... 178
Breusch-Pagan Test for Heteroscedasticity (IDE - IMS Delta)..................... 182

Xviii



Using Earned Value Data to Forecast the Duration of Department of Defense (DoD)

Space Acquisition Programs

I. Introduction

General Issue

The Department of Defense (DoD) faces a constrained fiscal environment for the
foreseeable future. Under these conditions, the DoD has come under increased scrutiny
from Congress to improve the accuracy of estimating acquisition programs’ cost and
schedule. Many prior studies have focused on the overall cost of programs (the cost
estimate at completion (EAC)) (Smoker, 2011). However, cost is not the only important
measure of performance. Cost, schedule, and technical performance are the three
primary performance objectives of acquisition program management. These three
components are inter-related, therefore when one component is affected, the others are
affected. Although cost performance is studied, schedule performance is the primary
focus of this research with an emphasis on improving the accuracy of schedule estimates.

The current method for evaluating schedule performance is based on Earned
Value Management (EVM), an approach created in the 1960s. EVM has been a useful
tool for monitoring cost performance, but it has limitations with assessing schedule
performance (Lipke, 2003). Specifically the schedule performance index (SPI) indicates
whether a contract’s schedule performance is favorable (SPI > 1.0) or unfavorable (SPI <
1.0). Unfortunately, the SPI converges to 1.0 as the contract nears completion; as the
contract matures the SPI gradually becomes useless as a schedule performance metric.

Earned Schedule (ES), a schedule performance metric, was developed to overcome



EVM’s shortcomings (Lipke, 2003). Earned Schedule has demonstrated improved
schedule performance assessment over SP1 (Henderson, 2004; Crumrine, 2013).
However, Earned Schedule has not been applied exclusively to estimating the duration of
space system acquisitions. This research explores and applies five techniques to estimate
the duration at completion for space programs. The objective is to enhance cost estimates
and decision support. This chapter provides a discussion of how schedules are estimated
and evaluated with an overview of EVM based methods and the critical path method
(CPM). The remainder of the chapter will address the specific research questions to be

investigated, methodology used, and the limitations of this research.

Background

The traditional project control method (EVM) monitors actual performance
compared to planned, analyzes the variance, and provides a quantitative method to
forecasts the end result (Abdel Azeem, Hosny, & Ibrahim, 2014). Research conducted by
the Air Force Cost Analysis Agency (AFCAA) revealed EVM estimating methods
improved cost estimates of space systems midway through the acquisition lifecycle
(Keaton, 2014). A key component of that study was the use of duration as a cost driver
(Keaton, 2014). However, one potentially problematic assumption of that study was the
assumption of accuracy for the duration estimates. The duration estimates were based on
the contractor performance reports (CPR) which are based on the critical path method
(CPM). Are the CPR duration estimates accurate for space systems? The simple answer
is no. Schedule growth is rampant in DoD acquisition; satellite programs experience

above average development cost and schedule growth (GAO, 2014). Why does schedule



growth occur? According to a recent RAND report, Prolonged Cycle Times and
Schedule Growth in Defense Acquisitions, the top three cited factors for schedule were:

« Difficulty in managing technological risk

« Overoptimistic initial estimates and expectations

» Lack of funding stability (2014)

These factors can be grouped into two categories: errors and decisions. Errors
include cost estimation, schedule estimation, and technical issues (development or
implementation) (Bolten, et al., 2008). Decisions include changes in requirements,
affordability, quantity, schedule, and funding transfers (within or between a program)
(Bolten, et al., 2008). Even perfect estimates cannot account for all of the impacts from
decisions. Therefore the CPR estimates may not be accurate at all times. On the other
hand, in the absence of decision effects, the CPR estimates may not be accurate due to
overoptimistic expectations. Why use the CPR based duration estimates? One reason is
a lack of better alternatives. Given these shortcomings, the opportunity exists to provide

a more accurate duration estimate.

Problem Statement

Cost estimates play a vital role in the budgeting process. Historically, schedule
estimates are not given the same level of attention as cost estimates (GAO, 2012).
However, schedule estimates are also essential to the accuracy of cost estimates and
overall program performance (GAO, 2012). The accuracy of a cost estimate is important
because a lack of accuracy has unfavorable consequences. Cost estimates that

underestimate may eventually require funds to be pulled from other programs causing



extra work, loss of productivity, and possibly jeopardizing multiple programs (Bolten, et
al., 2008). Overestimating may lead to an opportunity cost; resources that could have
been allocated to systems were not invested. Ultimately, more accurate cost estimates
will lead to better resource allocation decisions and inputs into the budget process.

Since 1993 there have been many studies utilizing earned value data to develop
cost estimates (Christensen, 1993, 1994, 1999; Unger, 2001; Nystrom, 1995). These
studies employed a variety of methods: index-based, linear regression, nonlinear
regression, and S-curves. The overwhelming result of these studies is there is not one
method that works best in all circumstances (Trahan, 2009). The AFCAA study
determined Estimates at Completion (EACs) based on the Budgeted Cost of Work
Performed (BCWP) burn rate improved the accuracy for space systems with
developmental contracts (Keaton, 2014). The question remained, are the underlying
duration estimates accurate? This research attempts to evaluate the schedule estimating
method used in the AFCAA study. Next, additional methods are explored in an effort to
improve the accuracy.

In addition to cost estimate problems, the majority of space programs have
schedule growth (Younossi, et al., 2008). Therefore, a need exists to accurately predict
program duration in order to detect schedule issues sooner. Improved schedule forecasts
should provide more accurate and timely data to program managers thus enhancing risk
management and decision making.

The current methods (CPM and EVVM) for estimating program duration are
adequate, but can be improved. Many studies explain the strengths and weakness of

traditional EVM (Lipke, Zwikael, Henderson, & Anbari, 2009) and CPM (Kim, 2007).
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The primary weaknesses of the CPM are failure to update the estimate with actual data,
the lack of early detection of schedule problems, and complexity (GAQO, 2012). The
foundation of the argument against EVM is that it is value based instead of time based
and deterministic instead of probabilistic (Lipke, 2003; Kim, 2007). For example, a
schedule variance (Earned Value - Planned Value) of $3M means we are behind schedule
$3M instead of three months behind.

Earned Schedule was developed to overcome the value based weakness of EVM.
However, both EVM and Earned Schedule forecasts only provide point estimates so they
do not provide a probability or uncertainty associated with the estimate. The Kalman
filter earned value method (KEVM) addresses the inherent weaknesses of CPM, EVM,
and ES (Kim & Reinschmidt, 2010). This method is a hybrid of earned schedule (ES)
and a Kalman filter and has shown improved accuracy over the current methods (CPM,
EVM, and ES) (Kim & Reinschmidt, 2010). This research will not attempt to replace
EVM techniques. Instead, the research objective is to enhance and expand the toolset for

estimating program duration.

Research Objective and Questions

The overall research objective is to evaluate forecasting methods for space program
duration based on the following criteria: accuracy, reliability, and timeliness. In support
of the overarching research objective, the following questions will be investigated:

1. What are the appropriate methods to estimate a program’s duration?

2. How should accuracy be measured and how accurate are the various schedule

estimating methods (individual contract, overall and by various groupings)?



3. At what point in time (if at all) are the new techniques more accurate than the
status quo?
4. Are the forecasts accurate for programs with one or more over target baseline

(OTB)?

The overall goal of this research is to determine the schedule estimating methods that
can improve the cost estimate and add value to space system program offices (SPOs).
This value may be in the form of an additional tool for analysts to use when evaluating
the schedule performance of a program. The first investigative question addresses what
forecasting methods are available. The second investigative question is twofold; first we
must determine which accuracy measure should be used. Then we must analyze the
accuracy of each method by individual contract, overall, and groupings to determine if
substantial difference exist in the forecasting models. The third investigative question
seeks an answer to when, if at all, the forecasting methods become more accurate than the
status quo. Generally earlier forecasts are less accurate because more uncertainty exists.
Additionally, most programs are not stable until later in the program (50% complete or
later) and developmental programs take longer to stabilize than production programs
(Petter, 2014). The fourth question determines whether the forecasts are still useful for
programs that have OTBs. Many programs have undergone an OTB. Programs that

undergo an OTB may be less stable than non-OTB programs.



Methodology

The Defense Cost and Resource Center (DCARC) is used to obtain the necessary
EVM data to conduct the analysis of program schedule. This research will examine
forecasts based on the critical path method (CPM), earned value and earned schedule
index based methods, time series, regression (Smoker, 2011), the Kalman Filter
Forecasting Method (Kim, 2007), and analysis of the Integrated Master Schedule (IMS).
All of the forecasting methods will use data from the Earned Value Management Central
Repository (EVM-CR).

The accuracy of the models will be evaluated by the mean absolute percentage
error (MAPE). The goal is to measure the overall accuracy of each model and the
accuracy at certain percent complete intervals: 0-10%, 11-20%, and so on until 100%.
The forecasting methods will first be evaluated by individual contract. Then the contracts
are aggregated by duration: long, medium, and short duration. Next the contracts are
grouped by OTBs (one or more) and non OTB contracts. Finally, accuracy is evaluated

across all contracts (all observations).

Assumptions and Limitations

The DCARC is a system to collect Major Defense Acquisition Program (MDAP)
data (DCARC, 2014). These data consist of Contactor Performance Reports (CPR) and
other information needed to evaluate program performance. The primary EVM data of
interest in this research are: Budgeted Cost of Work Performed (BCWP), Budget at
Complete (BAC), program start date, and the estimated completion date (ECD) for the

program. The government contractors required to provide CPRs must adhere to industry



standards for EVM systems and reporting. The CPR data is reviewed by the program
management office for its quality and completeness. Although no data source is without
error, the DCARC is assumed to be a credible and reliable data source because of the
industry standard in place and the program office review process (NDIA/PMSC, 2012).
As an added check, we reviewed the CPR data used in this research for accuracy,
completeness, and consistency.

The analysis database is limited to space system programs primarily because the
characteristics of space systems programs are different than other programs such as
aircraft. Typically, space systems are acquired in much lower quantities than other
programs. Strictly analyzing space systems should lead to a more accurate approach for
estimating space systems, but could be less useful for other systems. The specific type of
contract selected for this analysis is Research, Development, Test and Evaluation
(RDT&E). RDT&E programs are more susceptible to schedule and cost estimating
errors than production contracts (Bolten, et al., 2008). This result is logical because
production contracts are for more mature programs with less uncertainty than
development contracts (Bolten, et al., 2008; Keaton, 2014). Therefore in theory, RDT&E

schedule estimates have more room for improvement.

Thesis Preview

A program’s schedule is important because programs completed on time will
deliver capability sooner. Additionally, schedule is important because of its relationship
with cost. Generally, schedule delays lead to increased program costs because extra

resources and/or overtime are utilized to reduce the delay (GAO, 2012). This research



does not attempt to study the underlying causes of schedule delays. Rather, this research
attempts to forecast the duration of individual contracts based on actual data.

One critical component of cost analysis is to reduce risk by regularly updating
cost estimates as programs mature (GAO, 2009; Keaton, 2014). Keaton’s study
demonstrated improved accuracy with cost estimates using duration as a parameter in the
following equation (2014):

Equation 1: Estimate at Complete (EACgcwp)

EACgcwp = (MonthEst Completion ~ MonthCurrent) * BCWPgyrn rate + BCWPr pate
Where the BCWPgym rate IS Calculated via linear regression with BCWP as the dependent
variable and time (months) as the independent variable. The key relationship is the time
to complete the system and the burn rate. Therefore, increasing the accuracy of the
underlying duration estimate should further improve the accuracy of the BCWP based
cost estimate (Equation 1).

Chapter 2 examines the relevant literature for program management, EVM,
Earned Schedule (ES), and the Critical Path Method (CPM). Additionally, two
established forecasting techniques are described: time series analysis and the Kalman
filter method. Finally, we examine a new technique to forecast a contract’s schedule
based on the Integrated Master Schedule (IMS). Chapter 3 discusses the specific
methodology used in this research. Chapter 4 presents the results of the research and a
detailed discussion. Chapter 5 summarizes the research, discusses the recommendations,

and explores areas for future research.



I1. Literature Review

Chapter Overview

The purpose of this chapter is to research program management, EVM, and
forecasting literature in order to develop accurate duration estimates. The first objective
is to explain program management and EVM in further detail. Then schedule forecasting
techniques are described, which leads into the relevant EVM research and the emergence
of Earned Schedule. Next, linear regression, time series analysis, Kalman filter theory,
and the Kalman filter forecasting method are examined. Finally, an analysis of the

Integrated Master Schedule (IMS) is presented.

Program Management

Fleming and Koppelman define a project as “a one-time-only endeavor to achieve
specific objectives with a precise start and completion date and finite resources to
accomplish the goals.” (2000: 203) Whereas a program is essentially a portfolio of two
or more related projects (Peisach & Kroecker, 2008). The literature often uses project
and program management interchangeably. This research will stay consistent with the
previous definitions. Individual contracts are considered projects. Program will be used
when discussing the overall performance of the portfolio of contracts.

According to the GAO, “[the] DoD and Congress have taken meaningful steps to
improve the acquisition of major weapon systems, yet many programs are still falling
short of cost and schedule estimates” (GAO, 2014: 1). Program managers are responsible
for the overall success of the program based on three primary criteria: cost, schedule, and

technical performance. In order to monitor a program’s performance, the Defense
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Acquisition Guidebook states, “the program manager should obtain integrated cost and
schedule performance data at an appropriate level of summarization to monitor program
execution” (2014). Earned Value Management is the DoD’s primary method for
project/program execution and control. The EVM approach can be used to monitor and

evaluate cost and schedule performance while attempting to meet technical objectives.

Earned Value Management Background

Earned Value Management (EVM) is an industry best practice for program
management and is mandatory for large DoD acquisition programs (GAO, 2009). EVM
goes further than a simple comparison of budgeted costs to actual costs. The budgeted
cost of work scheduled (planned value), the budgeted cost of work performed (earned
value), and the actual cost of work performed (actual value) are used to develop
performance metrics. These metrics can then be used to assess the program’s cost and
schedule performance and to estimate cost and time to complete (GAO, 2009). The
Defense Acquisition Guidebook defines EVM as:

A key integrating process in the management and oversight of acquisition

programs, to include information technology projects... [and is an] approach that

has evolved from combining both government management requirements and

industry best practices to ensure the total integration of cost, schedule, and work

scope aspects of the program. (Defense Acquisition University, 2014: 11.3.1)
Government acquisition programs exceeding a $20M budget must adhere to EVM
standards (Defense Acquisition University (DAU), 2014). Programs over $50M must

adhere to EVM standards and have a Defense Contract Management Agency (DCMA)
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validated EVM system (Defense Acquisition University (DAU), 2014). Figure 1 depicts
the integration of program management, EVM, cost analysis, and systems engineering
(GAO, 2009). Of specific importance is how cost analysis and cost estimates support the

EVM process while program management monitors the entire process.

Integrated ”_
Program baseline Sunveillance
managament p. review | —
= Cost
« Scheduls
= Technical
r
™y 1
; Perfiormance
s S5k, b o
value L aseline
management »Cost !+ Cost
= Schadule = Schadula
= Technical = Technical
=\ = —  ——
‘ Life-cycle ‘H‘F Risk. ‘ Acuston d—r‘ Risk ‘
Cost cost estimate - analysis J| L estmate JH analysis
analysis o Y —
= Cost *Cost = Cost = (Cost
= Schadule « Schadule = Schadula « Scheduls
= Technical « Technical = Technical « Technical
¥
s e
Concapt \I Analysis of Requirements Acquisition — Risk
definition altermatives definiion plan analysis
J . \ J
t ‘ I ~ } N « Cost
Work Wiork » Schadule
Systoms «Technical
—— breakdown hreakdown
anginesnng p . structure ‘_J + \ structure
Operationall | Risk
functional analysis
concept
«Cost
-Sche-;IL}e
Source: NDIA. = Technical

Figure 1: Cost Estimation, Systems Development, and Risk Management

Earned Value Management Data

The three fundamental EV data for assessing program performance are the
Budgeted Cost of Work Scheduled (BCWS), the Budgeted Cost of Work Performed
(BCWP), and the Actual Cost of Work Performed (ACWP). The contractor must report

the data on a regular basis, usually monthly. The data are reviewed by the program
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management office before being entered into the Defense Cost and Resource Center

(DCARC) database and the EVM-Central Repository. Table 1 summarizes and describes

the relevant data available in the EVM Central Repository (EVM-CR) while Table 2 lists

common metrics and formulas (DAU Gold Card, 2014). The primary EVM data of

interest for schedule assessment are: the BCWP, BCWS, Budget at Completion (BAC),

Start Date, and the Estimated Completion Date (ECD). These data are used to calculate

many of the metrics in Table 2 and are the foundation for the duration forecasts. The

duration forecast approach used in the AFCAA study is discussed in the next section

(Keaton, 2014).

Table 1:

Summary of EVM Measurements

EVM measurement

Description

Budgeted Cost of Work Scheduled
(BCWS), also called Planned
Value (PV)

Time-phased Budget Plan for work currently scheduled

Budgeted Cost of Work Performed
(BCWHP), also called Earned Value
(EV)

Value of completed work in terms of the work’s assigned budget

Actual Cost of Work Performed
(ACWP), also called Actual Cost
(AC)

Cost actually incurred in accomplishing work performed

Budget at Completion (BAC)

The planned total cost of the contract

Report From

The first day of the current reporting period for the contractor
performance report (CPR)

Start Date

The date the contractor was authorized to start work on the contract,
regardless of the date of contract definitization.

Completion Date

The completion date to which the budgets allocated in the PMB have
been planned. This date represents the planned completion of all
significant effort on the contract. The cost associated with the
schedule from which this date is taken is the Total Allocated Budget.

Estimated Completion Date (ECD)

The contractor's latest revised estimated completion date. This date
represents the estimated completion of all significant effort on the
contract. The cost associated with the schedule from which this date
is taken is the “most likely” management EAC.

Budget Completion Date

The contract scheduled completion date in accordance with the latest
contract modification. The cost associated with the schedule from
which this date is taken is the Contract Budget Base.

13




Table 2: EVM Metrics and Formulas

EVM measurement Description Formula

Cost Variance (CV) Difference between planned and actual | BCWP - ACWP
cost accomplishment

Schedule Variance (SV) Difference between planned and actual | BCWP - BCWS
schedule accomplishment, in dollar
amount

Cost Performance Index (CPI) | Cost efficiency of a program BCWP / ACWP

Schedule Performance Index | Schedule efficiency of a program BCWP / BCWS

(SPI)

Budgeted Cost for Work The budgeted cost of uncompleted BAC - BCWP

Remaining (BCWR)

work packages to reach program’s
completion

Estimate at Completion
(EAC)

Forecasted total cost of program

[(BAC - BCWP) / PF]
PF = CPI or SPI*CPI

Percent Complete (PC)

Percentage of the entire program that
is complete

BCWP /BAC

To Complete Performance
Index (TCPI)

Projects what the CP1 will be for the
remainder of the project to meet the
BAC

[(BAC-BCWP) / (Target-
ACWP)]
Target = BAC, LRE, or EAC

Baseline Execution Index
(BEI)

How well the project is following the
baseline plan and completing baseline
tasks as they are scheduled to be
completed

[Total Baseline Tasks
Completed / Total Tasks with
Baseline Finish On or Prior to
Current Report Period]

Schedule Forecasting: Critical Path Method

The GAO Schedule Assessment Guide defines the critical path as “the path of

longest duration through the sequence of activities” (GAO, 2012: 4). Any delayed

activities on the critical path will delay the entire project and therefore increase the

project’s duration (Fleming & Koppelman, 2000). The current DoD best practice for

estimating program duration is the critical path method (CPM) in conjunction with the

integrated master schedule (IMS). In addition to identifying important activities, the

CPM is used to estimate the duration of the program (the reported ECD).
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The GAO Schedule Assessment Guide considers updating the IMS with actual
progress as a best practice for the CPM (2012). Unfortunately, that same report lists
multiple occasions where programs failed to update the IMS (GAO, 2012). Given this
shortcoming, the IMS alone may not be a sufficient schedule forecasting tool. For an
MDAP, thousands of tasks are entered into the baseline schedule; additional tasks are
added as the program matures further adding to the schedule’s complexity. Because of
this phenomenon, Lipke et al. argue that an “in depth schedule analysis is burdensome
and may have a disruptive effect on the project team.” (2009: 407). A less arduous
method than an in depth schedule analysis is needed. However, this alternate approach
must be at least as accurate as the CPM. Previous project schedule research has
attempted to improve schedule forecasting using EVM data. This research will attempt to
improve schedule forecasting over the CPM while remaining accessible (not overly

complex or burdensome).

Schedule Forecasting: Earned Value Based Methods

The cancellation of the Navy’s A-12 Avenger program in 1991 ignited a renewed
interest in EVM research. These studies were focused on independent cost estimates at
complete (IEAC) and they established EVM as an effective tool for estimating a
program’s cost performance (Christensen, 1993, 1994, & 1999). However, EVM’s
ability to forecast schedule has not been as successful. Henderson studied EVM based
schedule forecasting with the three following formulas (2004):

Equation 2: Independent Estimate at Complete (IEAC)

IEAC(t) = PD / SPI
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Equation 3: Independent Estimate at Complete (IEAC)
IEAC(t) = PD / SPI(t)
Equation 4: Independent Estimate at Complete (IEAC)
IEAC(t) = PD / CPI*SPI(t)
Where PD is the planned duration and SPI(t) is the earned schedule application to the SPI
developed by Lipke. Equation 3 was the only accurate forecasting method out of the
three in Henderson’s study (2004). A potential weakness of this study is its application to
only two projects: Commercial IT Infrastructure Expansion Project (Phase 1 and
combined Phases 2 and 3) with durations of 34 and 22 weeks. The durations of these
projects are short when compared to the duration of the space systems researched in this
thesis (from 25 to 242 months). On the other hand, Henderson’s method should be robust
because it incorporates the CPM derived Planned Duration (PD) and EVM based
Performance Factors (PF). Because of its robustness and simplicity, Henderson’s basic
formula [IEAC(t) = PD/ Performance Factor (PF)] is used as one of the primary
forecasting methods in this research.
EVM research by Kim used the following formula to calculate an IEAC(t) he

called the Estimated Duration at Completion (EDAC) (2007):

Equation 5: Estimated Duration at Completion (EDAC):

(BAC — EV)

EDAC = ti 1
C = time elapsed + SPI

Kim provided an example of a 120 month project to illustrate the schedule forecasting
weakness of SPI (2007). Figure 2 shows the planned value (BCWP), the actual costs

(ACWP), and the earned value (BCWS) over time intervals for this project (Kim, 2007).
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The project has a 20% overrun in cost and schedule. Figure 3 shows the stable cost
estimate at complete (EAC) and the erratic behavior of the Estimated Duration at
Completion (EDAC) (Kim, 2007). The EDAC is overestimated by as much as 58%
during the first half of the project. Furthermore, the EDAC is underestimated by 20%
late in the project (95 months). This erratic behavior by the SPI based schedule forecast
is also demonstrated in Henderson’s research. However, the project examined in Kim’s
study is not described and the proposed equation does not match other schedule
estimating formulas in the literature (2007). Therefore the results may not be

generalizable.
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Figure 2: EVM Measurements over Time

To overcome the SPI schedule forecasting weakness, Lipke introduced the
concept of Earned Schedule (2003). Earned Schedule is calculated as the number of time

periods (N) earned value (BCWP) exceeds planned value (BCWS) plus a fraction of the
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earned value into the next period. Essentially, Earned Schedule is a linear interpolation
of the Program Management Baseline (PMB) which is illustrated in Figure 4 as the

Planned Value line (Lipke, 2012).
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Figure 3: EAC and EDAC over Time
Lipke’s Earned Schedule is calculated with the following equation (2012):

Equation 6: Earned Schedule

Earned Value(current) — Planned Value(previous)

E d Schedule = N
arned scheduie + Planned Value(current) — Planned Value(previous)

The Schedule Performance Index (SPI(t)) calculation is shown in Equation 7 (Lipke,
2012).
Equation 7: SPI(t)

Earned Schedule

SPI(t) =
© AT (actual time elapsed)
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Figure 4. Earned Schedule Concept

Earned Schedule was originally developed to provide more sensible information
to program managers (units of time instead of dollars). However, Henderson’s study
established SPI(t) as a useful forecasting method. Lipke et al. (2009) enhanced the SPI(t)
forecasts by adding confidence intervals. That study applied a statistical approach to
twelve projects and demonstrated accurate results for the three completion points (10%,
30%, and 60%). However, the projects used in the analysis were small (less than $6
million budget) and the specific projects types were not discussed.

Cost estimating methods were more numerous in the literature. Table 3 displays
methods to forecast the cost estimate at completion where the base equation (EAC = time
now + [(BAC - EV) / PF]) is similar to Henderson’s Equation 5 (Anbari, 2003;

Christensen, 1993; Lipke, 2003). This research will use some of the performance factors
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(PF) from Table 3 to develop time estimates at completion (TEAC). The performance
factors will be used with the planned duration (TEAC = PD/PF).

Table 3: Formulas for the Estimate at Completion (EAC)

Type Performance Factor Description

Standard PF = SPI Standard SPI

Earned Schedule PF = SPI(t) Earned Schedule based SPI
Schedule Cost Index  PF = CPI*SPI The product of CPI and SPI is

called the critical ratio (Anbari,
2003) or the Schedule Cost Index
(Christensen, 1993).

Moving Average PF = CPI(m) Moving average of incremental CPI
over latest month (m) intervals. For
example: CPI(3m), CPI(6m), and
CPI(12m).

% Complete PF = (PC)*CPI+(1-PC)*SPI A weighted method using percent
complete (PC), CPI, and SPI

Vandevoorde and Vanhoucke (2006) examined three schedule forecasting model
summarized in Table 4. That study used data from three projects at Fabricom Airport
Systems in Brussels; the authors found earned schedule method as the only method with
reliable results during the entire project (Vandevoorde & Vanhoucke, 2006: 298).

Table 4: Three Schedule Forecasting Methods

Type EDAC Description

Planned Value Method EDAC = PD/PF PD = planned duration

[PF = SPI or SCI]
Earned Duration EDAC =t + PD-ED/PF  ED = earned duration,
Method [PF = SPI or SCI] [ED = actual duration*SPI]
Earned Schedule EDAC =t + PD-ES/PF  SPI(t) = ES/actual time
Method [PF = SPI(t)]

In 2011, Earned Schedule was studied by an AFIT student, Captain Kevin
Crumrine. This study established the Earned Schedule based SPI(t) as a better indicator

than SPI for assessing a program’s schedule performance. Crumrine’s study was focused
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on predicting schedule overruns of aircraft and missile systems rather than forecasting
duration. However, it may provide insight into which Performance Factor (PF) leads to a
better forecast. Because the SPI converges to 1.0 at approximately the 66 percent
completion point of the program it may lose forecast accuracy as the program matures
(Crumrine, 2011).

Earned Schedule appears to be the best EV based schedule forecasting method
based on studies conducted by Henderson (2003), Lipke (2003), Lipke et al (2009),
Vanhoucke & Vandevoorde (2006), and Crumrine (2011). With the exception of
Crumrine, those studies focused on small acquisition programs and construction projects.
A study forecasting the duration of space programs with EV data has not been conducted.

This research attempts to fill that void in the literature.

Schedule Forecasting: Linear Regression

Linear regression has also been used to forecast a program’s duration. A study by
Smoker demonstrated this technique by first regressing the BCWP against months and
the same approach for BAC (2011). In that study, Smoker set the BCWP intercept to
zero because at the start of the project (time zero) the BCWP is zero. With the regression
equations for BCWP and BAC, the next step is setting BCWP equal to BAC to solve for
the unknown month as displayed in Equation 8. An assumption of this technique is the
program is 100% complete when BCWP/BAC = 1.0 (Smoker, 2011). After the
intermediate calculation, the duration formula is simplified to Equation 9.

Equation 8: Intermediate Calculation

BCWP coefficient * Months = BAC intercept + BAC coefficient * Months

21



Equation 9: Duration Forecast (Regression Based)

BAC intercept
(BCWP coefficient — BAC coefficient)

Months =

The primary strength of this method is it takes BAC growth into account; this may
lead to better forecasts because it is attempting to predict the completion date based on
trends instead of relying on the static reported completion date. Even in stable programs
the BAC tends to gradually increase until the program nears completion. However, in
unstable programs not only does the BAC gradually increase, the BAC also jumps from
one reporting period to the next and exhibits a stepped relationship instead of a straight
line. Because of this phenomenon, this regression based method may not be a useful
forecasting approach for unstable programs. Another concern with this study is the lack
of transparency in the program analyzed. This analysis was conducted on one program
which was not described by name, commodity, or contract type. Furthermore, the early
and late forecasts may not be accurate because the assumption of linearity occurs from
approximately the 25% to 80% complete points. Finally, this method requires a basic

understanding of linear regression and/or the software to conduct the regression.

Schedule Forecasting: Time Series Analysis

According to Box, Jenkins, and Reinsel, “a time series is a sequence of
observations taken sequentially in time” (2008: 1). EVM data are reported on a monthly
basis therefore they can be categorized as time series data. A key feature of a time series
is that future observations are dependent on previous observations (Box, Jenkins, &
Reinsel, 2008). Time series analysis is concerned with measuring dependence, building

statistical models, and applying the models to important areas (Box, Jenkins, & Reinsel,
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2008). These areas include: meteorology, economics, marketing, production, logistics,
and financial markets (Makridakis, Wheelwright, & Hyndman, 1998). This research uses
time series analysis to forecast future EV indices (CPI, SPI, SPI(t), and BEI) with past

observations.

Forecasting with Time Series

Makridakis, Wheelwright, and Hyndman define forecasting as “the prediction of
values of a variable based on known or past values of that variable or other related
variables” (1998: 599). The basic forecasting process is an analysis of the data series and
selection of the model that best fits the data series (Makridakis, Wheelwright, &
Hyndman, 1998). There are many forecasting methods ranging from simple to complex;
these methods include simple moving averages, exponetial smoothing, linear regression,
general ARIMA, and seasonal ARIMA models. This research focuses on the Box-

Jenkins method to building forecasting models.

Box Jenkins

Autoregressive (AR) / Integrated (1) / Moving Average (MA) (ARIMA) models
were popularized by George Box and Gwilym Jenkins in the 1970s (Makridakis,
Wheelwright, & Hyndman, 1998). The overall approach to building ARIMA models is
called the Box-Jenkins methodology. The methodology contains three phases:
identification, estimation and testing, and application (Makridakis, Wheelwright, &
Hyndman, 1998). The major advantage to the Box-Jenkins approach is the robust
evaluation of the underlying pattern of the time series baseline. The type of pattern that

exists helps the practitioner decide which techniques to implement. Certain patterns
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suggest the data are suitable for AR, MA, I, or a combination of the parameters. The
underlying statistical concepts are discussed in the subsequent sections followed by a

discussion of the ARIMA model building process.

Autocorrelation

A key concept of ARIMA modeling is autocorrelation. The book Forecasting
Methods and Applications defines autocorrelation as:

The correlation between values of the same time series at different time periods. It

is similar to correlation, but relates the series for different time lags. Thus there

may be an autocorrelation for a time lag of 1, another for a time lag of 2, and so

on (Makridakis, Wheelwright, & Hyndman, 1998: 590).
Lag is the separation in time between an observation and a previous observation
(Makridakis, Wheelwright, & Hyndman, 1998). Autocorrelation is similar to
autoregression, but key differences exist. Autocorrelation is used to assess the
relationship of time series data. Whereas autoregression is used to forecast with time
series data based on the mathematical relationship autocorrelation describes (Carlberg,
2013). Autoregression is discussed further in the General Non-Seasonal ARIMA Model
section.

The key autocorrelation statistic is the autocorrelation coefficient for the kth lag
(k= the lag number) (Makridakis, Wheelwright, & Hyndman, 1998). The formula is
shown in Equation 10; where Y is the mean of the number (n) of non-missing points, Y¢ is
the observation in time (current) while Yy, observation at a previous time (lagged by k

periods) (Makridakis, Wheelwright, & Hyndman, 1998).
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Equation 10: Autocorrelation Coefficient

n

1 _ _
== (=N —D)

t=k+1
The autocorrelation function (ACF) contains the autocorrelation coefficients and
depicts the pattern of autocorrelation (Carlberg, 2013). The ACF plotted against the lag
is called a correlogram and is depicted in Figure 5. In Figure 5, the AutoCorr parameter

is the autocorrelation coefficient while the bars graphically depict the autocorrelations.

Time Series Basic Diagnostics
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Figure 5: ACF and PACF Plot
According to the JMP® 11 Specialized Models guidebook “the [solid blue] curves
show twice the large-lag standard error (+/-) 2 standard errors” for 95% confidence limits
(JMP, 2014: 158). A large autocorrelation from a previous lag (k-1) may inflate
subsequent lags before dampening (dying out) (Box, Jenkins, & Reinsel, 2008). Because
of this phenomenon, an adjustment is made to determine the significant autocorrelation
from the inflated value; the large-lag is the adjustment for this interdependence (Box,

Jenkins, & Reinsel, 2008). The autocorrelation coefficient standard error (SEy) is
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computed with Equation 11, while the large lag standard is the square root of SEx (Box,

Jenkins, & Reinsel, 2008).

Equation 11: Autocorrelation Standard Error

k-1

1 2

SEe (14 ZZri )
i=1

Partial Autocorrelation

The book Forecasting Methods and Applications states, “partial autocorrelations
are used to measure the degree of association between observations Y and Y., when the
effects of other time lags (1, 2, 3, ..., k-1) are removed” (Makridakis, Wheelwright, &
Hyndman, 1998: 320). Makridakis, Wheelwright, and Hyndman further explain, “the
partial autocorrelation coefficient of order k is denoted by ak and can be calculated by
regressing Yt against Yt-1, ..., Yt-k” (1998: 321). The partial autocorrelation coefficient
formula is shown in Equation 12 where the ak is represented by the coefficient By.

Equation 12: Partial Autocorrelation Coefficient
Yi=Bo+PB1Ye1+B2 Y2+ BiYexk

The solid blue lines represent 2 standard errors for 95% confidence limits in the
PACEF plot (see right side of Figure 5 for an example) (JMP, 2013). The partial
autocorrelation coefficient standard error is computed as follows (Makridakis,
Wheelwright, & Hyndman, 1998):

Equation 13: Partial Autocorrelation Standard Error

1
SEk: \/_ﬁ
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White Noise Model

An assumption of ARIMA models is the forecast residuals follow a white noise
model (Box, Jenkins, & Reinsel, 2008). According to the book Forecasting Methods and
Applications, a white noise model “is a simple random model where observation Y; is
made up of two parts, an overall level, ¢, and a random error term, e; which is
uncorrelated from period to period” (Makridakis, Wheelwright, & Hyndman, 1998: 317).
Equation 14 shows the white noise model:

Equation 14: White Noise Model
Yi=c+ e

The white noise model is a critical aspect of time series analysis. In theory, all
autocorrelation coefficients of white noise data have a sampling distribution
approximately normal with a mean of zero and standard error of 1/Nn, where n is the
number of observations (Makridakis, Wheelwright, & Hyndman, 1998). Each lag’s mean
can be compared to zero with a t-test. Once again, the solid blue lines on the ACF side in
Figure 5 represent two standard errors (JMP®, 2013). Values within the blue lines are
not statistically different than zero (JMP®, 2013). Values outside the blue lines are
statistically different than zero thus we can infer those observations are not random
(white noise), they represent a pattern (Box, Jenkins, & Reinsel, 2008). In addition to the
white noise model, the sampling distribution is another foundational concept in time
series analysis (Makridakis, Wheelwright, & Hyndman, 1998). The distribution and
standard error provide insight into what is random (white noise) and what is a true pattern

or significant relationship (Makridakis, Wheelwright, & Hyndman, 1998).
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Portmanteau Tests
Portmanteau tests allow multiple autocorrelation coefficients to be tested at once
(Makridakis, Wheelwright, & Hyndman, 1998). The most common portmanteau tests are
the Box-Pierce and Ljung—Box test (Makridakis, Wheelwright, & Hyndman, 1998). Both
methods use the following hypothesis test:

e Hy: The data are independently distributed. The correlations in the population
from which the sample is taken are zero, so that any observed correlations in the
data result from randomness of the sampling process.

e Hj: The data are not independently distributed, the correlations are significantly
different than zero (Box, Jenkins, & Reinsel, 2008).

The test statistic for Box-Pierce is displayed in Equation 15 (Box, Jenkins, & Reinsel,

2008).

Equation 15: Box-Pierce Test Statistic

h
Q=n) 12

k=1
Where n is the number of observations and h is the maximum lag considered
(Makridakis, Wheelwright, & Hyndman, 1998). Equation 16 displays the formula for the
Ljung-Box test statistic (Q*) which is similar, but slightly different than the Box-Pierce

test (Box, Jenkins, & Reinsel, 2008):

Equation 16: Ljung-Box Test Statistic

h
Q*=n(n+2) ) m—k) r?
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The r¢ variable is the autocorrelation value for observation k (Box, Jenkins, & Reinsel,
2008). Both portmanteau tests compare the test statistic (Q and Q*) to the chi-square
distribution (x) to determine if the plot of the residuals is statistically different from zero
(white noise) or “to test that the residuals from a model can be distinguished from white
noise” (JMP, 2013: 158). The Ljung-Box Q* and p-values appear for each
autocorrelation lag as depicted in Figure 5 (JMP®, 2013). A small p-value means the
data are significantly different than zero (not random/white noise). We rely on Ljung-
Box in this research because the software (JMP®11.0) provides the Ljung-Box (Q*) and
theory indicates it has advantages over the Box-Pierce test (Q) (Bowerman & O'Connell,

1993: 497).

Time Series Patterns

There are four patterns in which time series data are categorized: horizontal
(stationary), seasonal, cyclical, and trend (Makridakis, Wheelwright, & Hyndman, 1998).
A stationary pattern occurs when the observations fluctuate around a constant mean; an
example is a product with sales that do not fluctuate much over time (Makridakis,
Wheelwright, & Hyndman, 1998). A seasonal pattern exists when certain factors
influence the time series; for example, Christmas and other holidays affect the sales of
many products. A cyclical pattern exists when the increases and decreases of the data are
not due to a fixed period; the lack of a fixed period is what differentiates cyclical from
seasonal; examples include industries correlated with the macro-economy and business
cycle (steel, automobiles, and major appliances) (Makridakis, Wheelwright, & Hyndman,

1998). A trend pattern exists where there is a long term rise or decline in the data;

29



examples included sales from many companies, the gross national product, and energy
usage (Makridakis, Wheelwright, & Hyndman, 1998). Many data series are comprised of
multiple patterns (Makridakis, Wheelwright, & Hyndman, 1998). Given the nature of
this research we do not expect to identify any seasonal or cyclical patterns. Although
trend patterns may exist we expect to primarily deal with stationary EV indices (CPI, SPI,

SPI(t), and BEI).

Examining Stationarity
In time series analysis, stationary essentially means no growth in the data with a
constant mean and variance that is independent of time (Makridakis, Wheelwright, &
Hyndman, 1998). There are multiple ways to check stationarity. The most basic check is
a visual examination of the time series plot. A stationary plot is free of upward or
downward trends, with the spikes close to equal distance from the mean so they

effectively cancel each other out. Figure 6 graphically depicts a stationary time series.
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Figure 6: CPI Time Series Graph
Another method to detect stationarity involves examining the ACF plot (Figure

5). According to the book Forecasting Methods and Applications, “the autocorrelations
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of stationary data drop to zero quickly while the non-stationary series will remain
significantly different than zero for several time lags” (Makridakis, Wheelwright, &
Hyndman, 1998: 326-327). When a visual examination of the ACF plot does not provide
conclusive results, the Augmented Dickey-Fuller test (ADF) can be used (JMP®, 2013).
The ADF test determines stationarity with a mathematical test statistic and the following
hypothesis test (JMP®, 2013):

e Hg: Test Statistic = 0 (not stationary)

e Hj: Test Statistic <0 (the data is stationary)

A negative value denotes a stationary time series (JMP®, 2013). The JIMP® 11.0
output produces three ADF tests: zero mean, single mean, and trend (2013). Because the
indices in this research should never be zero the means will be single or trend. Figure 6
shows negative single and trend ADF test statistics therefore this time series is considered

stationary.

Removing Stationarity

When trends or other non-stationary patterns exist in the times series, the resulting
positive autocorrelations dominate the ACF plot (Makridakis, Wheelwright, & Hyndman,
1998). Therefore it is critical to remove the non-stationarity in order to assess the true
autocorrelation structure before proceeding with the model building process (Makridakis,
Wheelwright, & Hyndman, 1998). One approach is called differencing and is defined by
the book Forecasting Methods and Applications as “the change between each observation
in the orignial series. The differenced series will have only n-1 values since it is not

possible to calculate a difference (Y’;) for the first observation” (Makridakis,
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Wheelwright, & Hyndman, 1998: 326) The differencing calcluation is shown in

Equation 17 (Makridakis, Wheelwright, & Hyndman, 1998):

Equation 17: First Order Differencing
Y=Y, -V,

Taking the first difference is a useful method for eliminating stationarity

(Makridakis, Wheelwright, & Hyndman, 1998). However, the first difference may not

remove the stationarity completely. In this case, the data can be differenced again. This

series will have n-2 values and contain two integrated (I) parameters. The formula is

shown in Equation 18 (Makridakis, Wheelwright, & Hyndman, 1998):

Equation 18: Second-Order Differencing

Y"t = Yt - ZYt—l + Yt—Z

General Non-Seasonal ARIMA Model
According to the book Predictive Analytics, the term ARIMA stands for:
AR: Autoregressive. The model and forecast can be partially or completely based
on autoregression.
I: Integrated. The baseline may need to be differenced and the differenced series
modeled. In order to forecast, the difference(s) are reversed by a process called
integrating. This restores the baseline to its original level.
MA: Moving Average. Not based on an average of observations, but an average
of a model’s errors (Carlberg, 2013: 242)

Regression with time lagged input variables is called autoregression (AR) and is

based on the general form of Equation 19 (Makridakis, Wheelwright, & Hyndman, 1998).

32



Equation 19: Autoregression
Ye =Bo+ B1Yeo1 + LYz + - BpVip T €

Conceptually, AR is similar to regression; the difference is the response variables
from previous periods are used as explanatory variables to compute the current period’s
response (Yt) (Makridakis, Wheelwright, & Hyndman, 1998).

As previously discussed, the residuals (or error terms) can also be used as
explanatory variables in a regression equation (Makridakis, Wheelwright, & Hyndman,
1998):

Equation 20: Moving Average (Box-Jenkins)
Yi =Bo+ Bret—1 + Brer—z + - Pger—q t €
Here the dependence relationship among successive error terms (er.q, €., ... €wq ) IS called
a moving average (MA) model (Makridakis, Wheelwright, & Hyndman, 1998). This is
obviously different than a simple moving average which is an average of observed
values. To avoid confusion, this research only uses the term moving average (MA) when
referring to ARIMA models.

Autoregressive (AR) and moving average (MA) parameters can be combined to
form autoregressive moving average (ARMA) models (Makridakis, Wheelwright, &
Hyndman, 1998). ARMA models can only be used with stationary data; if the original
data is non-stationary, the data must be differenced (Makridakis, Wheelwright, &
Hyndman, 1998). At this point, the model is now called an autoregressive integrated
moving average (ARIMA) model. There are a large number of possible ARIMA models.
The general non-seasonal model is known as ARIMA (p, d, q) (Carlberg, 2013):

e AR: p=number of the autoregressive parameters in the model
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e | d =the number of times the data has been differenced to achieve stationarity
e MA: g=the number of moving average parameters in the model (Carlberg, 2013:

243)

A white noise model is classified as ARIMA (0,0,0); while a random walk model
is classified as ARIMA (0,1,0) or I(1) because it has one degree of differencing and no
AR or MA parts (Makridakis, Wheelwright, & Hyndman, 1998).

The simplest AR model is the first order ARIMA (1,0,0) which is also denoted by
AR(1). The equation is mathematically defined in Equation 21 where observation Yt
depends on Yt-1 with the coefficient @, restricted to -1 to 1 (Makridakis, Wheelwright, &
Hyndman, 1998: 337). The time series is equivalent to a white noise model when @, = 0.
When @,= 1, the time series is equivalent to a random walk model (Makridakis,
Wheelwright, & Hyndman, 1998: 337-338).

Equation 21: ARIMA (1,0,0)
Yi=c+0,Y_ 1 +e

The simplest MA model is the first order ARIMA(0,0,1) or MA(1). The model is
mathematically defined in Equation 22 where observation Y; depends on the residual (e;)
and also the previous residual (e..1); the coefficient is restricted to lie between -1 and 1
(Makridakis, Wheelwright, & Hyndman, 1998).

Equation 22: ARIMA (0,0,1)
Yi=c+e — 06,1
In practice it is rarely necessary to use values other than 0, 1, or 2, because this small

range of values covers a great range of forecasting situations (Makridakis, Wheelwright,
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& Hyndman, 1998). Now that the essential concepts have been discussed we can move

to the model building process itself.

Box-Jenkins Approach
This section will describe the three phases of the Box-Jenkins methodology:
Identification, Estimation and Testing, and Application. Figure 7 visually depicts the

Box-Jenkins methodology (Makridakis, Wheelwright, & Hyndman, 1998).

Data Preparation
- Transform data
- Difference data
Phase | I
Identification .
Model Selection
- Examine data, ACF and PACF to ID potential models
I
I ™
Estimation
- Estimate parameters in potential models
Phase Il - Select best model using suitable criteria
Estimation : : ~
g Diagnostics
and testing - Check ACF/PACF of residuals
- Do portmanteau test of residuals No
- Are the residuals white noise?
J
Yes "
Forecasting
Phase Il - Use model to forecast
Application |

Figure 7: Box-Jenkins Methodology Flowchart

Phase | — Identification
As the name implies the objective of this phase is to identify models that are

potentially suitable for the time series data being analyzed. Data preparation and model
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selection takes place in this phase. Makridakis, Wheelwright, and Hyndman recommend
the following steps for phase one (1998: 347):
1. Plot the time series data
2. Assess the data for stationarity
3. Use differencing if the series is not stationary
4. Once stationarity is achieved, examine the ACFs and PACFs to assess patterns
with three possibilities to consider.
a. Does seasonality exist
b. AR or MA model may be determined

c. If AR or MA is not clearly suggested, an ARIMA may be necessary

The first three steps have been discussed in the previous sections. Seasonality is
not a concern (4.a.), but steps 4.b. and 4.c. are crucial in the identification phase. To
identify a suitable model we compare the observed patterns with the theoretical
(expected) ACF and PACF patterns with the approach outlined in Table 5 (Makridakis,
Wheelwright, & Hyndman, 1998; Montgomery, Johnson, & Gardiner, 1990). Within
Table 5 the expression tails off means the function (ACF, PACF) decays in an
exponential, sinusoidal (sine wave), or geometric fashion with potentially more nonzero
values than zero (Montgomery, Johnson, & Gardiner, 1990). Whereas cuts off refers to
the function truncating abruptly to zero with few nonzero values (Montgomery, Johnson,
& Gardiner, 1990). In the previous sentences, zero denotes within (+/-) 2 standard errors
(not statistically different than zero). A nonzero value is outside the (+/-) 2 standard

errors (statistically different than zero). Table 5 highlights the dichotomy between AR
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and MA models. In an AR the ACF tails off while the PACF cuts off. In an MA the
ACEF cuts off while the PACF tails off. With this in mind the combined ARMA model
contains a tail off for both ACF and PACF.

An ARIMA (p,d,q) model is an option if no clear AR, MA, or ARMA model is
delineated. The general ARIMA models yields a great variety of patterns in the ACF and
PACEF; given this fact, there are no clear rules for visually identifying ARIMA models
(Makridakis, Wheelwright, & Hyndman, 1998). If differencing is required (non-
stationary data) an ARIMA model is a logical choice, otherwise choosing the specific
model type (p,d,q) is based on judgment, experience, and experimentation (trial and
error).

Table 5: Expected Patterns in the ACF and PACF for AR and MA Models

Process ACF PACFE
AR (1) Tails off (Exponential decay): Cut off (spike at lag 1, then cuts to zero)
* positive if ¢;>0 * spike is positive if ¢; >0
» alternating in sign starts (-) if ;<0 | « spike is negative if ¢; <0
AR(p) Tails off (Exponential decay or Cuts off after lag p
damped sinewave)
MA (1) Cuts off (Spike at lag 1, then cuts to Tails off (Exponential decay):
Zero): * negative if 0; > 0
* spike is positive if 6, <0 « alternating in sign starts (+) if 6;< 0
* spike is negative if 6,> 0
MA(q) Cuts off (spikes at lags 1 to g then Tails off (Exponential decay or damped
cuts off after lag q) sinewave)
ARMA(p, g) | Tails off (Exponential decay) Tails off (Exponential decay)

The potential models are identified by first setting boundaries on the ARIMA
parameters. As previously discussed, it is generally not necessary to use parameters

greater than two. Restricting the ARIMA parameters to the values listed in Table 6 yields
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the 27 models listed in Table 7. The next phase of the Box-Jenkins methodology is Phase
Il (estimation and testing).

Table 6: ARIMA Model Parameters

ARIMA | Minimum | Maximum
parameter

p 0 2

d 0 2

q 0 2

Table 7: Potential ARIMA Models

AR(1) AR(2) MA(1) MA(2)
ARMA(L, 1) |ARMA®1,2) |ARMA(2, 1) |ARMA(2 2)
ARI(1, 1) ARI(1, 2) ARI(2, 1) ARI(2, 2)
IMA(L, 1) IMA(L, 2) IMA(2, 1) IMA(2, 2)

ARIMA(0, 0, 0) | ARIMA(L, 1, 1) | ARIMA(L, 1, 2) | ARIMA(L, 2, 1)
ARIMA(L 2, 2) | ARIMA(2, 1, 1) | ARIMA(2, 1, 2) | ARIMA(2, 2, 1)
ARIMA(2, 2, 2) | 1) 1(2)

Phase Il — Estimation and testing

In this phase the parameters are estimated in potential models, then the best model
is selected based on suitable criteria. Finally, diagnostic tests are conducted to ensure the
model meets the underlying assumptions. With our list of potential models from Table 7
we can use computer programs to find appropriate initial estimates. The software used in
this research is JMP ® version 11. The JMP Specialized Models guidebook explains the
estimation process, “the [ARIMA] models are fit by maximizing the likelihood function,
using a Kalman filter to compute the likelihood function” (JMP®, 2013: 162).

For each parameter estimate () there is also a standard error (s3) (Bowerman &
O'Connell, 1993). A significance test is conducted with these two values with (alpha =
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0.05). The t-ratio is shown in Equation 23 utilizing the following hypothesis test
(Bowerman & O'Connell, 1993):
e Ho: 0 =0. The parameter is equal to zero (not significantly different than zero).
e Hj,: 0 #0. The parameter is not equal to zero (significantly different than zero).

Equation 23: ARIMA Parameter Test Statistic

t =

& |

If the p-value is less than alpha, the parameter is not equal to zero (significantly
different than zero). If the p-value is greater than alpha the parameter is not significantly
different than zero. Generally, a t-ratio of at least 2 in absolute value will be considered
significant (JMP, 2013: 166). The AR parameter was tested for significance as exhibited
in Figure 8. In this example, the parameter is not equal to zero (0.0001 < 0.05), therefore

this model’s AR (1) parameter is significant.

Parameter Estimates

Constant

Term Lag Estimate Std Error t Ratio Prob>|t| Estimate
AR1 1 0.81577641 0.0650184 1255 0.17764315
Intercep 0 0.96428017 0.0233158 41.36

Figure 8: AR Model Parameter Estimates

Model Rank
There may be more than one valid model out of the twenty-seven considered. We
need a method to determine the best model. The recommended approach is a method that
prevents over-fitting by adding a penalty for adding more explanatory variables. For

ARIMA models the likelihood (L) is penalized for added terms (parameters) (Makridakis,
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Wheelwright, & Hyndman, 1998). Two criteria are provided by JMP ® 11: the Akaike’s
Information Criterion (AIC) and the Schwarz’s Bayesian Criterion (SBC or BIC) (2013).
These measures are computed as follows (Makridakis, Wheelwright, & Hyndman, 1998):
Equation 24: Akaike’s Information Criterion (AIC)
AIC = —2logL + 2m
Equation 25: Schwarz’s Bayesian Criterion (SBC)
SBC = —2logL + mln(n)

Where n is the number of observations and m = the number of parameters in the
model (including the intercept) (Makridakis, Wheelwright, & Hyndman, 1998). Lower
AIC or SBC values indicate a better fitting model (JMP, 2013). Figure 9 depicts an
individual model summary whereas Table 8 summarizes multiple models. Out of the
eight models compared, the AR(1) has the lowest AIC and SBC. Therefore AR(1) is
deemed the best model. The AIC and SBC are similar measures, for simplicity this

research uses the lowest AIC to select the best model.

Model Summary

DF 69 Stable Ye
Sum of Squared Errors 0.10454555 Invertibl  Ye
Variance Estimate 0.00151515
Standard Deviation 0.03892497
Akaike's 'A' Information Criterio  -256.39331

Schwarz's Bayesian Criterion -251.86795
RSquare 0.68090163
RSquare Adj 0.67627702
MAPE 2.1452803
MAE 0.01958656
-2LoglLikelihood -260.39331

Figure 9: AR Model Summary
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Table 8: ARIMA Model Comparison

Model DF | Variance AlC SBC R Square | -2LogLH | Weights | MAPE | MAE
AR(1) 69 0.00151 -256.39 -251.86 0.681 -260.39 0.6125 2.145 | 0.019
ARMA(1, 1) 68 | 0.00153 | -254.69 | -247.90 0.682 -260.69 0.2616 2.178 | 0.019
ARIMA(L,1,1) | 67 0.00147 -252.48 -245.73 0.676 -258.48 0.0866 2.312 | 0.021
IMA(Z, 1) 68 | 0.00162 | -248.83 | -244.33 0.658 -252.83 0.0139 2.267 | 0.021
ARI(1, 1) 68 0.0016 -248.68 -244.18 0.657 -252.68 0.0129 2.236 | 0.020
1(2) 69 | 0.00165 | -248.57 | -246.32 0.651 -250.57 0.0122 2.235 | 0.020
MA(1) 69 0.00254 -220.27 -215.74 0.452 -224.25 0 3.480 | 0.031
ARIMA(0,0,0) | 70 0.00468 -178.35 | -176.095 0 -180.35 0 4,986 | 0.045

Diagnostic Checking
Now that we have chosen the best model, the following diagnostics must be
conducted to determine if the residuals are white noise (Makridakis, Wheelwright, &
Hyndman, 1998). The objective is to find no significant autocorrelations or partial
autocorrelations when checking the residuals” ACF and PACF (Makridakis,
Wheelwright, & Hyndman, 1998). The first step is a visual inspection of the residuals’
ACFs and PACFs plot. If any ACFs or PACFs (except lag 0) are outside the acceptable
range we reject the null and conclude the model’s residuals are not white noise. The next
step is an additional check that involves the Ljung-Box test of the following hypothesis:
e Hy: The residuals are independently distributed. The residuals are white noise.
e Hj: The residuals are not independently distributed; the residuals are not white
noise.
If the p-value is less than alpha (0.05) we reject the null, if it is greater than alpha

we fail to reject the null and conclude the residuals are white noise. In the example from
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Figure 10, the p-values are greater than the alpha. We fail to reject the null and conclude
that the residuals are from white noise. Once the diagnostic checks are passed the model
is deemed adequate, therefore it is not necessary to further modify the model

(Makridakis, Wheelwright, & Hyndman, 1998). The model can now be used to forecast.
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Figure 10: Plots of ACF and PACF for Residuals
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Phase 111 — Application
Forecasting with the model is straight forward. The prediction equation will
depend on the model type selected. In practice the user chooses the model based on the
previous steps then relies on the software to calculate the forecasted values. The forecast
values are based on the number of significant lags and forecasted periods. With the
exception of the intercept, the number of lags must be more than one, but less than the

number of observations (see Figure 8). In Phase I the user can decide the number of lags
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to be considered. Unlike in the beginning of the analysis, the software does not allow the
user to change the lagged periods used in the prediction formula. This research uses the
model’s first forecasted value (next month) as a performance factor in the time estimate

formula (time estimate = planned duration/performance factor (PF)).

Time Series Summary

In 2011, AFIT student C. Grant Keaton used time series analysis to detect
changes in the CPI and SPI to evaluate a contract’s performance. This literature review
has not discovered any studies that applied time series analysis to forecast the duration of
DoD programs. In this research, time series analysis is used to forecast values based on
previous period’s data rather than the current period’s index value (SPI, SPI(t) or CPI). If
the pattern from previous periods is different than the cumulative index value then the
forecasted value will be different. The difference will lead to different and possibly more
accurate duration forecasts.

The Box-Jenkins approach is a robust method and is easy to implement if the user
has access to the proper software. The strength is the systematic procedure used to
determine the model that best fits the data. Given this robustness, ARIMA models are
arguably the most accurate time series forecasting method (Montgomery, Johnson, &
Gardiner, 1990). Beyond the assumptions already listed, ARIMA models, like all
models, have weaknesses. On the technology side, many practitioners will not have
access to JMP® or other powerful statistical software. The open source R statistical
software contains the capability to conduct time series analysis, but it may have a steeper

learning curve than commercial off the shelf software. The book Predictive Analytics by

43



Carlberg (2013) provides software add-ins that make times series analysis easier in Excel,
unfortunately, that package is not as efficient as JMP ®11. In addition to the software
concerns, some of the time series concepts are complex thus making this method
inaccessible if the practitioner does not have a working knowledge of forecasting. The
largest potential downside is complex techniques such as ARIMA models are not
guaranteed to significantly improve accuracy over simpler techniques (Makridakis,

Wheelwright, & Hyndman, 1998).

Schedule Forecasting: Kalman Filter Forecasting Method

In 2007, Kim developed a new schedule forecasting technique, the Kalman filter
forecasting method (KFFM). The KFFM assesses a project’s progress and calculates a
probability distribution for the duration at completion (Kim, 2007). In simple terms, the
KFFM is a hybrid of Earned Schedule (ES) and a Kalman filter (Kim, 2007). According
to Kim, “the Kalman filter is a recursive algorithm used to estimate the true state, but
hidden state of a dynamic system using noisy observations (2007: 23). Rudolph Kalman
wrote the seminal paper in 1960; the Kalman filter has been applied to broad areas
including autonomous or assisted navigation (Welch & Bishop, 2001). The Kalman filter
application to schedule estimating is relatively new and has not been applied to DoD
programs (Kim, 2007). The KFFM provides a probabilistic framework that incorporates
actual performance data being generated by a project (earned value) and prior knowledge
of the program (planned value) to forecast the project’s future progress (Kim &

Reinschmidt, 2010).
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The Kalman filter approach used by Kim will be discussed (2007). The
foundation of the KFFM is a recursive algorithm that uses prior and posterior information
to continuously update estimates via a learning cycle shown in Figure 11 (Kim, 2007;
Kim & Reinschmidt, 2010). Within the Kalman filter framework, the state of the
dynamic system is represented by two sets of variables: the state variables (xx) and the
error covariance variables (Py) (Kim, 2007; Kim & Reinschmidt, 2010). The error
covariance is a measure of the uncertainty in the estimates of the state variables (Kim,
2007). According to Kim, “the states and covariance are updated through two stochastic
linear models: the measurement model and the system model” (2007: 24). The
measurement model updates the prior estimate with new information (z) to correct the
estimate (resulting in the posterior estimate) (Kim, 2007). Kim further describes the
process as “the system model predicts the future state of the system at the next time

period” (2007: 24).

KFFM Process

Figure 11 outlines the KFFM process while Table 9 lists the variables and
equations used in Kim’s study (2010). The process begins with the initial estimates of
the state vector and error covariance (Kim & Reinschmidt, 2010). The state vector is a
2x1 matrix: the time variance at time k (TVk) and its rate of change from the previous
period (dTVk / dt) (Kim & Reinschmidt, 2010). The initial state vector (xi) and error
covariance (Po) are estimated as zero because it is assumed the known uncertainty is

incorporated (Equation 26) (Kim & Reinschmidt, 2010).

45



Equation 26: Kalman Filter Initial Estimates
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Figure 11: Recursive Learning Cycle of the Kalman Filter
The process noise variable Q adjusts the Kalman gain (K); the Q is estimate based
on the mean of the initial estimated duration (Kim & Reinschmidt, 2010). The initial
estimate can be derived from a three point Program Evaluation and Review Technique
(PERT) estimate, listed in Equation 27 and Equation 28 (Kim & Reinschmidt, 2010). In
this example the process noise (q) equals 0.694 (the variance is (0.83)? = 0.694)
(Equation 29).
Equation 27: PERT Estimate (Mean)

O0+4M+P 095%50+4 %50+ 1.05%50

Mean = G = G = 50 months

Equation 28: PERT Estimate (Standard Deviation)

P—-0 1.05 %« 50 — 0.95 % 50
Standard Deviation = c = c = 0.83 months
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Equation 29: Process Noise Matrix

Qk:[g 2

Table 9: Kalman Filter Forecasting Model Components

Components

Equations

Description

State vector

—( TV
Xk = {dTVk /dt}

TVK =TV that is defined as the
earned schedule minus the time of
forecasting.

Dynamic
system model

X = Akxk -1+ Wg-1

Ay = [(1) (it]; Wg_1 = [Wf_l]

Ak=transition matrix. wk—1=vector
of random process noise and
wk—1=random error term for the
derivative of the TV.

Measurement
model

Zy :ka + vg

zi = [zx]; H = {1 0} v = [vy]

H=observation matrix. vk=vector
of random measurement noise and
vk=random error term for the
measurement zk.

Prediction
process

X = A%,

Py = AP_ AT + Qi—4

Before observing a new TVk at
time period k, the prior estimates
of the state vector and the error
covariance matrix P are calculated.
Qk—1=process noise covariance
matrix.

Kalman gain

K, = P;HT(HP HT + R,)™!

Kalman gain at time period k,
which is determined in such a way
that minimizes the posterior error
covariance matrix.
Rk=measurement error covariance
matrix.

Updating
process

Pi = I — K H]P¢

The posterior estimates of the state
vector and the error covariance
matrix are calculated using the
Kalman gain.

The variance of measurement error is the error associated with the measurement

process (vk); unless known, this variable is also estimated with PERT (Equation 30) (Kim

& Reinschmidt, 2010):
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Equation 30: Variance of Measurement Error

a— (—a)]2 _ f
9

Variance of vy = [ G

Maximum vk =a
Minimum vy = -a
Kim and Reinschmidt used a measurement error of £ 3 months so Rk = 1.0
(2010). This value can be increased or decreased based on the program manager’s
confidence in the reliability of the data source (Kim & Reinschmidt, 2010). The R
simplifies to the r (the measurement error variable) displayed in Equation 31 (Kim &
Reinschmidt, 2010):

Equation 31: Measurement Error Matrix

The steps outlined in Figure 11 and the calculations listed in Table 9 have been
programmed into KEVM Lite ©, a Microsoft Excel based tool developed by Kim (2010).

KEVM Lite © is used in this research to compute duration estimates.

KFFM Applied to Schedule Forecasting

Kim’s study used EVM data as the inputs for the KFFM (2007). Specifically the
following parameters are used: budget at completion (BAC), planned value (PV), earned
value (EV), planned duration (PD), and the reporting date (t). Then Earned Schedule
(ES) is used as an input into the estimated duration at completion EDAC (t) formula. The
EDAC (t) is forecasted at a point in time (t), which is each month in this study (Kim &
Reinschmidt, 2010). The KFFM applies an algorithm to ES and EVM data to predict

three EDAC (t) curves shown in Figure 12: the mean, the upper bound, and the lower
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bound (Kim & Reinschmidt, 2010). Additionally, a probability of schedule slippage
(PrSS) is computed. In the same 2010 study Kim and Reinschmidt used two real projects
(a gas plant and a refinery plant) to show the KFFM in action.

Progress ($)
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Figure 12: Kalman Filter Forecasting

Kim and Reinschmidt compared the Earned Schedule (ES) method (PD/SPI(t)) to
the KFFM (2010). In that study, the KFFM outperforms the ES method in terms of
consistent estimates; furthermore, the ES method shows erratic tendencies in the monthly
trend analysis (Kim & Reinschmidt, 2010). Kim and Reinschmidt state, “improved
forecasting methods based on proven state-of-the art techniques should lead to better
project management decisions and improved project performance” (2010: 842).
Although the study has merit, it is not without limitations. The primary limitation is a
small sample size (two projects). For the purposes of this thesis, another limitation of the

Kim and Reinschmidt study is the relatively short planned durations of the projects
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studied (24 and 25 months). Additionally, DoD programs were not examined. This

research will apply the KFFM to lengthier projects and a different type of project (DoD).

Schedule Forecasting: Improving the Planned Duration Estimate

According to the GAO Schedule Assessment Guide, “the baseline schedule
includes. .. original forecasts for activity start and finish dates, ... original estimates for
work, resource assignments, critical paths, and total float [slack] (2012: 136). The
current schedule includes new tasks (added since the baseline schedule) and should
include updates from actual performance data to forecast the remaining work (GAO,
2012). Using the baseline schedule as a benchmark to assess the project’s schedule
performance is a GAO best practice (GAO, 2012). Lastly, the baseline schedule is used
with the critical path method (CPM) to estimate the project’s duration (Integrated Master
Schedule (IMS) planned duration).

In 2014, Lofgren introduced an approach to improve the IMS planned duration
estimate. Lofgren argues the importance of the baseline schedule plan on three points:
the planners know the major activities, well defined process exists to develop the system,
and the Integrated Baseline Review (IBR) allows the contractor and program office to
agree on the reasonableness of the baseline plan (2014: 3). Therefore a project’s baseline
from the initial IMS is an important benchmark for the entire project. Lofgren analyzed
12 MDAP contracts with 133 schedule observations (individual IMSs) (2014: 2).
Supporting chapter one’s discussion on schedule growth, Lofgren found many schedule
estimates were overly optimistic compared to actual performance. In this study, schedule

performance (completing tasks on time) rarely improves with project maturity (Lofgren,
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2014). Aside from schedule performance, the overall health of the schedule can provide
insight. One health check is the % of tasks are coded as hard constraints with a goal of
less than 5%. Lofgren’s study discovered the majority of IMSs did not meet the hard
constraint metric (2014: 6). Another health check is schedule logic; every task must have
a predecessor or successor (GAO, 2012). The metric is met if the project has less than
5% of its tasks with missing predecessors and successors (Lofgren, 2014: 7). An IMS
that does not meet the 5% metric indicates an improperly maintained plan and is likely to
lead to inaccurate duration estimates. In spite of the relatively poor quality of the IMSs,
Lofgren not only attempts to improve the accuracy of the estimated completion date
(ECD), he also attempts to provide the ECD earlier in the project (2014: 7).

Lofgren’s framework relies on a proposed metric, schedule slip, which is added to
the planned duration estimate. The first step of this process sets the baseline as the
benchmark (Lofgren, 2014). Each subsequent month’s IMS data was compared to the
baseline IMS to determine the schedule slip; the schedule slip is added to the reported
completion date as depicted in Figure 13 (Lofgren, 2014).

The schedule slip metric displayed in Table 10 was derived from Lofgren’s
framework (2014). In this example, 4.2 months are added to the IMS planned duration of
49.1 months for a total of 53.3 months. For comparison purposes, the contractor
performance (CPR) planned duration value was 49.0 months. The following is a list of
equations used to develop Table 10.

Equation 32: Schedule Slip
Schedule Slip = Max [Current Finish Date — Baseline Finish Date — Total Slack]

Equation 33: IMS Planned Duration
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IMS planned duration = start date from CPR to IMS reported end date
Equation 34: CPR Planned Duration
CPR Planned Duration = start date from CPR to Estimated Completion Date from CPR
Equation 35: Independent Duration Estimate
Independent Duration Estimate = IMS planned duration + schedule slip estimate
Equation 36: Enhanced IDE

Enhanced IDE = IDE/PF
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Figure 13: Schedule Slip Method
Incorporating the IMS PD and the baseline analysis by Lofgren appears to be an
improvement over the IMS PD by itself. Lofgren’s study demonstrated improved
accuracy and timeliness over the contractor’s reported duration estimate. Although the

commodity and contract type were not mentioned, the database is comprised of MDAP
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contracts thus the results may be generalizable to this research. A weakness of this
approach is it is labor intensive. The key argument against conducting an in-depth
schedule analysis is that is a labor intensive process. If time is scarce it may make more
sense to only use this approach when the IMS PD changes. This approach may reduce
the task frequency from monthly to quarterly. Another potential weakness is the fact that
the baseline IMS is not usually available until after the integrated baseline review (IBR)
(3 to 6 months into the contract) which may make this technique less useful for short

duration contracts.

Table 10: IMS Analysis (Current Month Compared to Baseline)
Baseline Current
Finish Baseline Finish Finish
(IMS #1) Total (IMS #2) | Variance Slip Slip
Task Name [4/15/08] Slack [5/20/08] (days) (days) | (months)
ASIC Build 1-2-3-4 Integration 01/30/08 9| 05/02/08 92 83 2.77
PSP Develop Test Cases 1 06/02/08 -47 | 06/02/08 0 47 1.57
10 : Det Design (S2) Ph 1 05/16/08 -80 | 07/02/08 46 126 4.20
MAX 126 4.20

This research uses Lofgren’s framework; the schedule slip is added to the current
IMS planned duration to obtain an independent duration estimated (IDE), then the IDE
and the performance factors are used to calculate an enhanced IDE (Enhanced IDE =

IDE/PF).

Baseline Execution Index (BEI)
Related to Lofgren’s method is the concept of the Baseline Execution Index
(BEI). The Baseline Execution Index (BEI) is a trend metric defined as “the ratio of

[baseline] activities that were completed to the number of [baseline] activities that should
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have been completed by the status date” (GAO, 2012: 148). Three outcomes can be
concluded based on the value of the BEI (GAO, 2012: 148):

e BEI =1 (the project is adhering to schedule)

e BEI <1 (the project is behind schedule)

e BEI > 1 (the project is ahead of schedule)

The BEI does not measure a project’s overall task completion per se, it is
concerned with the completion of only the baselines tasks. Eventually as the project
matures the BEI will converge to one possibly reducing the metric’s usefulness in the late
stages of a contract. This phenomenon is a weakness comparable to the SPl. The BEI
relies on the concept that the baseline plan is important to the overall performance of the
project. With that in mind, the BEI is used as a performance factor (PF) in this research.
The BEI was calculated with the National Aeronautics and Space Administration’s
(NASA) Schedule Test and Assessment Tool (STAT) and the IMS. STAT is a Microsoft
® Project add-in. Finally, the BEI is considered an EVM metric. However, the BEI was
not discussed in the forecasting literature. This research attempts to fill the void in the

literature.

Summary

In this chapter the relevant literature was reviewed to determine the existing
methods used to forecast project duration. Based on this research, Earned Schedule
appear to be the best EV index based method. Although ES has been studied extensively,
its use in forecasting DoD program duration has not been studied as frequently. The

application of time series analysis with EVM data has been studied on a limited basis in
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the DoD (Keaton, 2011). However, using time series analysis and EVM data to forecast
the duration of space programs has not been studied. The KFFM has been used
successfully for a limited number of construction type projects, but not for DoD projects.
IMS analysis is a recent addition to developing duration estimates; further research is
necessary to validate the method on space and development contracts. Finally, using the
BEI to forecast duration does not appear in the literature. This research will attempt to
fill these voids in the literature by using EVM index based methods (CPI, SPI, SPI(t), and
BEI), time series forecast based on EVM indices (CPI, SPI, SPI(t), and BEI), Kalman
filter forecasts based on Earned Schedule, and IMS analysis to develop independent
duration estimates (IDEs). In the next chapter the specific methodology for each

technique is discussed.
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I11. Methodology

Chapter Overview

This analysis uses Contractor Performance Report (CPR) data to develop schedule
estimating models. The purpose of this chapter is to discuss the approaches used to
develop the estimating models. First, the data, data source, and data limitations are
discussed. Next, the forecasting methods are described: EVM index based, EVM index
based plus time series, regression, Kalman filter, and the independent duration estimate
(IDE). Finally, the evaluation section explains how the duration forecasting models are

evaluated.

Data and Data Source
The EVM Central Repository (EVM-CR) is the primary source of data for this
research. The Defense Cost and Resource Center (DCARC) website describes the EVM-
CR as a joint effort between DCARC and Office of the Under Secretary of Defense for
Acquisition, Technology, and Logistics (OUSD/AT&L), and is managed by Performance
Assessment and Root Cause Analysis (PARCA) (Defense Cost and Resource Center
(DCARC), 2014). The EVM-CR provides:
e Centralized reporting, collection, and distribution for key acquisition EVM
data.
e A reliable source of authoritative EVM data and access for The Office of the
Secretary of Defense (OSD), the Services, and the DoD Components.
e Houses Contract Performance Reports (CPRs), Contract Funds Status Report

(CFSR), and the Integrated Master Schedules (IMS) submitted by contractors
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(and reviewed and approved by Program Management Offices) for ACAT 1C
& 1D (MDAP) and ACAT 1A (MAIS) programs.
e Approximately 80 ACAT 1A, 1C, and 1D programs and 210 contracts and

tasks reporting data (Defense Cost and Resource Center (DCARC), 2014).

Figure 14 provides a graphic representation of the EVM-CR (Defense Cost and
Resource Center (DCARC), 2014). As discussed in the previous chapter, the primary
EVM data of interest for schedule assessment are: Budget at Complete (BAC), program
start date, the estimated completion date (ECD) for the program, Budgeted Cost of Work
Performed (BCWP), Budgeted Cost of Work Scheduled (BCWS), and the Integrated
Master Schedule (IMS).

The programs of interest were selected based on commaodity and contract type:
DoD space programs and development contracts. The commodity filter narrowed the
results to thirteen initial programs listed in Table 11. The following three programs were
removed because the EVM-CR did not contain development contracts for them: the
Enhanced Polar System (EPS), Evolved Expendable Launch Vehicle (EELV), and
National Polar-Orbiting Operational Environmental Satellite System (NPOESS). The
next data criteria are completed contracts or contracts that were reported as 90%
complete or greater. The 90% number was used as a benchmark for near complete
because the Selected Acquisition Report (SAR) does not require contracts past 90%
complete to report progress. As a result of these criteria, the following programs were
eliminated: Family of Advanced Beyond Line-of-Sight Terminals (FAB-T), Global

Positioning System 111 (GPS 111), Global Positioning System Next Generation
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Operational Control System (GPS OCX) Phase B, and Military GPS User Equipment

(MGUE). The Advanced Extremely High Frequency Satellite (AEHF) and Space-Based
Infrared System High Component (SBIRS HIGH) were included in this analysis because
they were considered near complete at 99 and 96 percent complete. Table 12 shows the

six programs and ten contracts that were analyzed.
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Figure 14: EVM Central Repository Overview
The contracts were classified as stable or unstable in an attempt to answer the
research question, “are the forecasts accurate for contracts with Over-Target-Baselines
(OTBs)?” Table 13 shows programs without an OTB while Table 14 lists programs with
OTBs. Further analysis by system type (surveillance, communication, or navigation) was
considered, but ultimately was not conducted because the dataset was already limited in

size.
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Table 11: Initial Space System Programs

Number
of Development

Program Name Contracts Contracts
Advanced Extremely High Frequency Satellite (AEHF) 2 1
Enhanced Polar System (EPS) 2 0
Evolved Expendable Launch Vehicle (EELV) 2 0
Family of Advanced Beyond Line-of-Sight Terminals (FAB-T) 6 1
Global Positioning System 111 (GPS 111) 2 1
Joint Tactical Networks (JTN) - Army 5 1
Military GPS User Equipment (MGUE) 3 3
Mobile User Objective System (MUQS) - Navy 1 1
National Polar-Orbiting Operational Environmental Satellite
System (NPOESS) 1 0
Navstar Global Positioning System (Navstar GPS) 4 3
Next Generation Operational Control System (GPS OCX) 3 3
Space-Based Infrared System High Component (SBIRS High) 5 1
Wideband Global SATCOM (WGS) 2 2

Total 38 17

Table 12: Contracts Analyzed
Data

Program Contract Task Points
Advanced Extremely High Frequency Satellite (AEHF) F04701-02-C-0002 SDD 144
Mobile User Objective System (MUOS) - Navy N00039-04-C-2009 CLIN 0400 55
Next Generation Operational Control System (GPS System
0OCX) FA8807-08-C-0001 Design 21
Next Generation Operational Control System (GPS System
0OCX) FA8807-08-C-0003 Design 24
Navstar Global Positioning System (Navstar GPS) FA8807-06-C-0001 MUE 71
Navstar Global Positioning System (Navstar GPS) FA8807-06-C-0003 MUE 68
Navstar Global Positioning System (Navstar GPS) FA8807-06-C-0004 MUE 70
Space-Based Infrared System High Component (SBIRS
High) F04701-95-C-0017 RDT&E 212
Wideband Global SATCOM (WGS) FA8808-06-C-0001 Blk 2 87
Wideband Global SATCOM (WGS) FA8808-10-C-0001 B2FO 43
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Table 13: Contracts without an OTB

Program

Contract

GPS OCX

FA8807-08-C-0001

GPS OCX

FA8807-08-C-0003

WGS

FA8808-06-C-0001

WGS

FA8808-10-C-0001

Table 14: Contracts with One or More OTB

Program Contract OTBs
AEHF F04701-02-C-0002 3
MUQOS N00039-04-C-2009 3
NAVSTAR GPS | FA8807-06-C-0001 1
NAVSTAR GPS | FA8807-06-C-0003 4
NAVSTAR GPS | FA8807-06-C-0004 1
SBIRS HIGH F04701-95-C-0017 4

Data Limitations

Although monthly CPRs are reviewed by the program management office prior to
being entered into the EVM-CR, the data may contain inaccuracies. The data used in this
analysis were reviewed for logic and accuracy. The key finding was missing data. For
missing values, linear interpolation was used (prior reported value, next reported value,

and the time elapsed between the two periods). The lists of missing data are located in

Appendix A (Table 44 to Table 61).

Forecasting Method: EVM Index Based

The duration estimate is called the Time Estimate at Completion (TEAC). The

index based TEACs have the following form:
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Equation 37: Time Estimate at Completion (TEAC)
TEAC = IMS PD/PF

Where the IMS PD is the planned duration as reported in that month’s IMS and PF is one

of the earned value index performance factors. The IMS planned duration is calculated

as follows: the days between the reported contract start date and the IMS completion

date. The days are then converted to months. Table 15 lists the performance factors

(PFs) that are used in this analysis. Time series performance factors are denoted by T.S.

The SPI(t) metric was calculated with Lipke’s earned schedule calculator from the

Earned Schedule website (http://www.earnedschedule.com/Calculator.shtml).

Table 15: List of Performance Factors
Name Static Time Series
Baseline Execution Index BEI BEI (T.S.)
Schedule Performance Index SPI SPI(T.S.)
Cost Performance Index CPI CPI (T.S.)
Earned Schedule SPI SPI(t) SPI(t) (T.S.)
Schedule Cost Index SPI*CPI SPI (T.S)*CPI (T.S.)
Schedule Cost Index (ES) SPI(t)*CPI SPI(t) (T.S.) *CPI (T.S.)
Enhanced Schedule Cost Index BEI*CPI*SPI BEI*CPI (T.S.)*SPI (T.S.)
Enhanced Schedule Cost Index (ES) | BEI*CPI*SPI(t) | BEI (T.S.)*CPI (T.S.)*SPI(t) (T.S.)
Enhanced CPI BEI*CPI BEI (T.S.)*CPI (T.S.)
Enhanced SPI BEI*SPI BEI (T.S.)*SPI (T.S.)
Enhanced SPI(t) BEI*SPI(t) BEI (T.S.)*SPI(t) (T.S.)

Forecasting Method: EVM Index Based plus Time Series Analysis

Time series analysis was conducted with JMP® 11.0 to estimate the CPI, SPI,

SPI(t), and BEI parameters. The Box-Jenkins methodology for ARIMA models was used

for this time series analysis. The Box-Jenkins methodology consists of three phases:
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Identification, Estimation and Testing, and Application (Makridakis, Wheelwright, &

Hyndman, 1998).

Initiating the Analysis

Prior to conducting the analysis, the number of autocorrelation lags and forecast

periods must be determined. The number of autocorrelation lags will be n-1 until a

maximum of 25 is reached. For example, the SPI(t) at month 20 will have 19

autocorrelation lags to calculate a forecasted SPI(t). Month 30 will use a maximum of 25

lags in the analysis. The number of forecast periods is one (the next period). With the

autocorrelation lags and forecast periods determined we begin the analysis using the

Time Series command in JMP® 11. The initial output of the analysis is a plot of the data

as depicted in Figure 15.
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Figure 15: CPI Time Series Graph

Phase | - Identification

Data Preparation

Mean 0.9970463
Std 0.0087485
N 21

Zero Mean ADF  0.1231973
Single Mean AD  -1.288779
Trend ADF -1.385015

The analysis begins with an examination of the ACFs and PACF for stationarity.

Figure 16 shows a stationary time series while Figure 17 shows a potential non-stationary
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time series. When a visual examination of the ACF graph does not provide conclusive

results, the Augmented Dickey-Fuller test (ADF) can be used. The ADF test determines

stationarity with a mathematical test. A negative value denotes a stationary time series.

We can refer back to Figure 15 and conclude that this time series is stationary because

single mean and trend ADFs are negative. If necessary, differencing can be used to

remove non-stationarity in Phase I1.

Time Series Basic Diagnostics
Lag AutoCorr -.8-.6-4-20 .2.4.6.8 Ljung-BoxQ p-Value Lag
0o 10000/ :: . . 0
1 07137 ot 12.8055 0.0003 * 1
2 05748 Co 21.5293 <.0001 * 2
3 03977 Lo 259255 <.0001 * 3
4 02509 L 277725 <0001 * 4
5 00520 Do 27.8564 <0001 * 5
6 00239 ' 27.8752 <0001 * 6
7 -0.0343 Co 27.9165 0.0002 * 7
8  -0.0523 ol 28.0197 0.0005 * 8
9 -01281 o[ 28.6865 0.0007 * 9
10 -0.1656 ;[ 29.8926 00009 * 10
11 -02317 C 324691 0.0006 * 11
12 -0.2202 [ 35.0304 0.0005 * 12

Figure 16: Plots of ACF and PACF (Stationary)
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Time Series Basic Diagnostics
Lag AutoCorr -.8-.6-4-20 .2.4.6.8 Ljung-BoxQ p-Value Lag
0 10000 | @ : . . 0
1 08239 50.2577 <.0001 * 1
2 0.6940 86.4341 <0001 * 2
3 05660 110.853 <.0001 * 3
4 04470 | 126310 <.0001 * 4
5 03128 D 133.994 <.0001 * 5
6 02619 g 139465 <0001 * 6
7 02013 = 142748 <0001 * 7
8 01671 = 145045 <0001 * 8
9 01323 o 146,508 <.0001 * 9
10 0.1006 b 147368 <.0001 * 10
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12 0.0885 0 148484 <0001 * 12

Figure 17: Plots of ACF and PACF (potential non-stationary)
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Model Selection

The model selection stage requires an examination of the time series graph, ACF,
and PACEF plots to identify potential models. Figure 16 shows a strong candidate for an
autoregression (AR) model. The IMP® ARIMA Model Group function is an aid to the
model selection process because it can be used to compare multiple models at once. As
discussed in Chapter two, with the parameters from Table 6 we can produce twenty seven
potential models (listed in Table 7). After each month of data is analyzed, the diagnostics
are produced. Each of the twenty seven models from Table 7 will be considered. These
models will be entered into JMP® ARIMA model group command which will generate

an output similar to Table 16.

Phase Il — Estimation and Testing
Estimation
Each model’s usefulness is evaluated by the Akaike Information Criterion (AIC).
Lower AIC values are associated with a better model (Makridakis, Wheelwright, &
Hyndman, 1998). In this analysis, the model with the lowest average AIC is deemed the
best model and a candidate to forecast the performance factor. However, a diagnostics
check of the residuals must be conducted prior to using the model for forecasting.
Diagnostics
As previously discussed, in order for a forecasting model to be considered
adequate, the residuals should be white noise. Figure 18 shows this model’s residuals are
from white noise because they are all within the range denoted by the blue line (alpha =

0.05). A more robust test is the Ljung-Box Q portmanteau test of residuals. At an alpha
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of 0.05, all of the values are not significant; therefore the residuals can be considered a

white noise series. If the model residuals are not considered white noise, then we will

return to model selection stage and start the process again. If the model residuals are

from a white noise series we can proceed to forecasting with the model.

Table 16: Time Series Model Comparison

Model DF | Variance AlC SBC R Square | -2LogLH | Weights | MAPE | MAE
AR(1) 69 0.00151 -256.39 | -251.86 0.681 -260.39 0.6125 2.145 0.019
ARMA(1, 1) 68 | 0.00153 | -254.69 | -247.90 0.682 -260.69 0.2616 2.178 | 0.019
ARIMA(L,1,1) | 67 0.00147 -252.48 | -245.73 0.676 -258.48 0.0866 2.312 0.021
IMA(1, 1) 68 0.00162 -248.83 | -244.33 0.658 -252.83 0.0139 2.267 0.021
ARI(Z, 1) 68 0.0016 | -248.68 | -244.18 0.657 -252.68 0.0129 2.236 | 0.020
1(1) 69 0.00165 -248.57 | -246.32 0.651 -250.57 0.0122 2.235 0.020
MA(1) 69 0.00254 -220.27 | -215.74 0.452 -224.25 0 3.480 0.031
ARIMA(0,0,0) | 70 0.00468 -178.35 | -176.10 0 -180.35 0 4.986 0.045
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Figure 18: Plots of ACF and PACF

Lag

H O W o ~NOULDh WNRE O

=

-.8-.6-.4-20 .2.4 6.8

1

for Residuals

N EEEE
S

Y I I




Phase 111 — Application
Forecasting

Because of limited data in the early periods, time series forecasts will not be used
until month four. For the first month, the reported value of the performance factor will be
used. For the second month, the average of months one and two will be used. For the
third month, the average of months one, two, and three will be used as the forecasted
performance factor. From month four going forward, we used the forecasting model
selected in Phase Il with a maximum of twenty-five lags.

A fifty month contract should have forty-seven time series forecast values each
for the index values (excluding months 1-3). These forecasted index values will be used
as performance factors (PF) in the time estimate at completion (TEAC = IMS PD/PF) for

that period.

Forecasting Method: Linear Regression

As discussed in Chapter Two’s linear regression section, this method regresses the
BCWP against time (months). The BAC is also regressed against time (months). The
regressions are calculated from month three until the last reported month for each
contract. For each monthly forecast, the next step is setting BCWP and BAC regression
equations equal to each other to solve for the unknown month as displayed in Equation
38. After the intermediate calculation, the duration formula is simplified to Equation 39.
If the BAC changed by more than 10% from one period to the next the analysis is reset.

This means the analysis starts anew, the previous data points are not included in the
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regression calculations going forward. This approach helps smooth the forecast when
large changes in BAC occur from one period to the next.
Equation 38: Regression Forecast (Intermediate Calculation)
BCWP intercept +BCWP coefficient * Months = BAC intercept + BAC coefficient* Months

Equation 39: Duration Forecast (Regression Based)

BAC intercept — BCWP intercept
(BCWP coefficient — BAC coefficient)

Months =

Forecasting Method: Kalman Filter Forecast Method

The Kalman Filter Forecast Method was applied with the Excel tool KEVM
Lite© developed by Kim (2010). The planned duration, the time phased planned values
(also called the performance measurement baseline (PMB)), and the confidence level are
the inputs required for this method. The confidence level is a decision variable; 95% was
used in this analysis. The planned duration is based on the reported Estimated
Completion Date (ECD). Portions of the PMB must be estimated if the monthly PMB is
not known. The time phasing of the planned values is developed with linear interpolation
of the reported BAC and planned duration.

After making the appropriate adjustments, the KEVM Lite © updates each
month’s forecast. This forecast contains a mean, upper bound (UB), and a lower bound
(LB) for the time estimate at completion (TEAC). In addition to the three TEAC
estimates, the probability of schedule slip (PrSS) was calculated. Examples of the TEAC

estimates and PrSS are displayed in Figure 19; the mean value was used in this analysis.
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A B C I D | E | F [ G H

j Project Duration Forecasting using the KEVM Input Cells
_ Project Name: I Output Cells I
I The probability between the upper and lower bounds: I 90% I

3 Progress Curves KEVM
7] TEAC (Time Esumate at Completion) KEVM
5| [Time PV EV LB UB Prss Outputs
5] o 0 0 11.01 1299 50.0%
E 1 29 14 10.78 13.29 52.0%

1| (2 86 60 10.89 1339 57.2%
E 3 171 130 11.11 1355 67.2%

13| |4 286 230 1142 13.75 79.6%
] |5 429
15| |6 600

16| |7 771
7] [8 ol4
18] |9 1.020
(19| |10 1114
20| |11 1171

u| (12 1,200
22| |13

k| (14
24| 15

2% The array formula in the cells "E9:H24"
E '= [EKEVAILite(SCS9:5C%$24,5DS0:SD24 SFS4)}

28| Copyright 2013 BC Kim. Last updated on August 1,2013.

Figure 19: KEVM Lite ©

Forecasting Method: Independent Duration Estimate (IDE)

The final technique used in this analysis was derived from Lofgren’s research
(2014). The IMS planned duration will be modified and used with the performance
factors to calculate an Independent Duration Estimate (IDE). The schedule slip metric
will be calculated with the formula in Equation 40 (Lofgren, 2014). Each unfinished task
is considered for the schedule slip. As tasks are completed they are removed from
consideration. The results for one example contract are displayed in Table 17. In this
example, 4.2 months are added to the Integrated Master Schedule (IMS) planned duration
of 49.1 months, for a total of 53.3 months. This schedule slip is added to the current

planned duration to obtain an independent duration estimated (IDE) as shown in Equation
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43. The IDE will be used with the performance factors to calculate a TEAC. The
following equations are used to calculate the parameters in Table 17. These equations
were previously listed in chapter two, they are listed again for clarity and convenience.
Equation 40: Schedule Slip
Slip = Max (Current Finish Date — Baseline Finish Date — Total Slack)
Equation 41: IMS Planned Duration
IMS planned duration = start date from CPR to IMS reported end date
Equation 42: CPR Planned Duration (status quo)
CPR PD = start date from CPR to Estimated Completion Date from CPR
Equation 43: Independent Duration Estimate
Independent Duration Estimate = IMS planned + schedule slip estimate
Equation 44: Enhanced IDE
Enhanced IDE = IDE/PF

Table 17: IMS Analysis (Current Month Compared to Baseline)

Baseline Current
Finish Baseline Finish Finish
(IMS#1) Total (IMS#2) | Variance Slip Slip

Task Name 4/15/08 Slack 5/20/08 (days) (days) | (months)
ASIC Build 1-2-3-4 Integrat. 01/30/08 9| 05/02/08 92 83 2.77
PSP Develop Test Cases 1 06/02/08 -47 | 06/02/08 0 47 1.57
10 : Det Design (S2) Ph 1 05/16/08 -80 | 07/02/08 46 126 4.20

MAX 126 4.20

Finally, if lapses in data occur the IMS PD will be used for the IDE (see

Appendix A). Lapses occurred most frequently in the beginning of the contract.

69



Evaluating the Forecasting Models (Accuracy, Timeliness, and Reliability)

In order to determine the usefulness of the forecasting models an evaluation
measure must be selected. The evaluation measure used in this research is the Mean
Absolute Percent Error (MAPE). There are many forecasting evaluation measures, but
the MAPE is arguably the easiest to explain and understand. The MAPE formula is
exhibited in Equation 45 (Makridakis, Wheelwright, & Hyndman, 1998). In this
equation, n equals the total number of observations (months) and t equals the time of the
forecast.

Equation 45: Mean Absolute Percentage Error (MAPE)

1
Mean Absolute Percentage Error (MAPE = HZ Abs[(Actual, — Forecast,)/Actual,]

Models with lower MAPE values (closer to zero) are more accurate. For
example, a MAPE of 0% represents a perfect forecast. A MAPE of 15% means that the
forecast is underestimating or overestimating the true value by 15% on average. Figure
20 displays one model’s [IDE / (SPI(t) (T.S.) * BEI] forecast compared to the status quo
forecast (CPR PD); the IDE based forecast is more accurate than the status quo until the
late stage of the program (80% to 100%). Additionally, in order to assess the timeliness,
the MAPE will be calculated in 10% intervals from 0% to 100%.

Table 18 compares six models to the planned duration using the previously
discussed metrics; partial results are displayed because of space constraints (43 models).
For individual contracts the following forecast models are reported: the CPR PD, IMS
PD, IDE, most accurate IMS PD/PF, most accurate IDE/PF, Regression, and Kalman

filter method.
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Figure 20: Duration MAPE over Time

Table 18: Forecast Model Intervals and Overall MAPE

Forecasting Model
Percent CPRPD | IMSPD IDE IMS PD / IDE / Regress- | Kalman
Complete (status [SPI(t) * [SPI(t) ion Filter
Interval quo) CPI*BEI] | (T.S)*
BEI]

0to 10 52.72% | 52.72% | 52.72% 37.76% 49.55% 74.58% | 52.72%
11to 20 52.72% | 52.72% | 52.72% 42.05% 47.91% 80.11% | 52.72%
21t0 30 51.75% | 51.75% | 51.75% 43.07% 42.10% 63.11% | 48.86%
31to 40 50.26% | 50.45% | 43.34% 42.26% 40.10% 52.74% | 52.42%
41to 50 47.04% | 46.95% | 29.00% 36.40% 23.83% 52.29% | 46.07%
51 to 60 40.82% | 41.84% @ 17.38% 21.41% 7.72% 53.17%  44.53%
61to 70 19.57% | 19.57% | 14.61% 7.03% 6.86% 50.60% | 35.93%
71 to 80 11.16% | 11.16% | 11.16% 5.03% 10.06% 40.89% @ 27.36%
81to 90 0.00% 0.00% | 8.32% 6.78% 5.07% 15.14% 0.71%
91 to 100 0.00% 0.00% | 4.33% 5.56% 6.08% 15.79% 1.20%
MAPE 33.05% | 33.16% | 29.26% 25.14% 24.45% 50.57% | 36.44%
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In addition to reporting the results of individual contracts, results are grouped
into OTB versus non-OTB contracts (631 and 175 observations). The analysis is further
grouped by long duration (SBIRS and AEHF), medium duration (MUOS, NAVSTAR
GPS, and WGS), and short duration contracts (GPS OCX). The long duration group has
356 observations, the medium duration group has 405 observations, and the short
duration group has 45 observations. The analysis is further categorized to contracts with
the data necessary to create an IDE (7 of 10 contracts with 617 observations). The IDE
models will be compared to the other model types within the same data set (seven
contracts). The last grouping is an aggregate of forecasts across all contracts (this does
not include IDE models because three contracts did not have available data); in this
analysis there are 806 total forecasts for each model. Finally, due to the potential for
similar accuracy results the models were analyzed with the Tukey-Kramer HSD multiple
comparison of means function via JMP®. The purpose of this test is to determine if the
means of the absolute percent errors (APES) are significantly different from each other
and different from the status quo. The Tukey-Kramer HSD uses pooled variances;

therefore, before proceeding we must determine if the variances are equal (JMP, 2013).

Test for Unequal Variances: Levene Test
We tested for unequal variances using the Levene’s test with an alpha of 0.05 and

the following hypothesis:
e Hg: the variances are the same: 012 = 022 = ... 0k

e H,: at least one variance is different
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If the p-value is greater than alpha we fail to reject the null and conclude the variances
are equal. If the p-value is less than alpha we reject the null and conclude at least one

variance is different (JMP®, 2013).

Multiple Comparisons of Means: Tukey-Kramer HSD

We can use the Tukey-Kramer HSD method to compare means if the APEs are
normally distributed (or the number of observations are greater than 30) and the variances
are equal. An alpha of 0.05 is used unless otherwise noted. If the APEs are not normally
distributed (or the number of observations are less than 30) or the variances are not equal

it is recommend to use an alternative method.

Summary
This chapter described how the forecasting models were developed. A

description of the data source, data selected and its limitations was provided. Next, we
discussed the systematic approach to compute the status quo (CPR PD), EVM Index
Performance Factors, EVM Index Performance Factors (Time Series based), linear
regression, the Kalman Filter Forecast Method, and the Independent Duration Estimate
(IDE). In summary, this research utilizes five types of forecasting techniques:

1. CPR PD (status quo)

2. IMS PD and Enhanced IMS PD = IMS PD/PF (non-time series and time series)

3. Linear Regression (Smoker, 2011)

4. Kalman Filter Forecasting Method (Kim, 2007 & 2010)

5. IDE (IDE = IMS PD + Schedule Slip) and Enhanced IDE = IDE/PF (non-time

series and time series) (Lofgren, 2014)
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The status quo is the base case and serves as a comparison for the relative
accuracy of the other techniques. The Kalman Filter and Regression methods are
standalone techniques in this research and the results are easy to distinguish. The IMS
PD and IDE are similar because they both use the planned duration from the IMS plus the
performance factors. The distinguishing factor is the schedule slip metric in the IDE.
Time series analysis was not a standalone model, but an addition to both the IMS PD and
the IDE performance factors (PF). Models with time series performance factors are
denoted by T.S. For example the model IMS PD/ [SPI(t)*BEI (T.S.)] has a BEI time
series performance factor. Finally, the model evaluation criterion was listed (MAPE) and
the Tukey-Kramer HSD method was explained. In the next chapter, the results of this

analysis are reported.
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IVV. Results and Discussion

Chapter Overview
In this chapter we review the research objective and investigative questions before
reporting the accuracy of the schedule forecasting methods. The objective is to evaluate
forecasting methods for space program duration based on the following criteria: accuracy,
reliability, and timeliness. In support of the overarching research objective, the following
questions were investigated:
1. What are the appropriate methods to estimate a program’s duration?
2. How should accuracy be measured and how accurate are the various schedule
estimating methods (individual contract, overall, and by various groupings)?
3. Atwhat point in time (if at all) are the techniques more accurate than the status
quo?
4. Are the forecasts accurate for programs with one or more over target baseline
(OTB)?
The first question was exploratory in nature. Several forecasting methods were
studied, the strengths and weakness of the various models were discussed in chapters two
and three. The remaining questions comprise the bulk of the analysis; this chapter is

dedicated to answering these questions.

Forecast Model Accuracy Results
All Contracts (No IDE Models)
Table 19 lists the MAPE for each model for the entire data set (806 observations).

This does not include Independent Duration Estimate (IDE) models. The most accurate
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model across the entire data set is an improvement of 2.93% over the status quo (26.14%
vs. 23.22%). With the exception of the regression approach (36.43%), each of the
models lie within a narrow range (23.22% to 26.14%).

Table 19: MAPE - All Contracts (No IDE Models)

IMS PD/ [SPI(t) (T.S.)*BEI] 23.22%
IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)] 23.25%
IMS PD/ [SPI(t) (T.S.)] 24.30%
IMS PD/ [SPI*CPI*BEI(T.S.)] 24.50%
IMS PD/ [SPI*CPI*BEI] 24.52%
IMS PD/ [SPI(t)] 24.59%
IMS PD/ [SPI(t)*CPI*BEI(T.S.)] 24.66%
IMS PD/ [SPI(t)*CPI*BEI] 24.75%
IMS PD/ [SPI(t)(T.S.)*CPI(T.S.)] 24.84%
IMS PD/ [SPI(t) T.S.*BEI(T.S.)*CPI(T.S.)] 24.87%
IMS PD/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 24.89%
IMS PD/ [SPI(T.S.)*CPI(T.S.)] 25.06%
IMS PD/ [SPI(t)*CPI] 25.07%
IMS PD/ [SPI(T.S.)] 25.11%
IMS PD/ [SPI(t)*CPI(T.S.)] 25.14%
IMS PD/ [SPI(t)(T.S.)*CPI] 25.20%
IMS PD/ [SPI*CPI] 25.25%
IMS PD/ [SPI(T.S.)*CPlI] 25.26%
IMS PD/ [SPI] 25.34%
IMS PD 25.77%
Kalman Filter 25.94%
CPR PD (status quo) 26.14%
Regression 36.43%

Every model except regression was more accurate than the status quo. However,
because many of the values were clustered together we conducted a Tukey-Kramer HSD
analysis of means. Analyzing all of the models at once resulted in unequal variances. In
chapter three we discussed the necessity of equal variances before we could use the

Tukey-Kramer HSD method. We truncated the analysis to include the CPR PD and the
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most accurate models. The Levene test p-value was 0.9624, denoting equal variance (see
Appendix B, Figure 36). The results of the Tukey-Kramer analysis are displayed in
Figure 21; examining the connecting letters report from top to bottom, the models that do
not have a letter in common are significantly different. Two models are significantly
different from the status quo: [IMS PD/ SPI(t) (T.S.)*BEI(T.S.)] and [IMS PD/ SPI(t)

(T.S.)* BEI]. These models are outlined with a blue box at the bottom of Figure 21.

Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

Level Mean
CPR PD (Status Quo) ¥¢ 0.26143040
IMS PD 0.25765533
IMS PD/SPI(t) T.S.*BEI(T.S.)*CPI(T.S 0.24846278
IMS PD/SPI(t)*CPI*"BEI(T.S.) 0.24637221
IMS PD/SPI(t) 0.24586576
IMS PD/SPI*CPI*BEI(T.S.) 0.24476141
IMS PD/SPI(t) (T.S.) 0.24297630
IMS PD/SPI(t) (T.S.)*BEI (T.S.) 0.23233908
IMS PD/SPI(t) (T.S.)*BEI B 0.23216898
Levels not connected by same letter are significantly different

>>>>>> >

Figure 21: Tukey-Kramer HSD - All Contracts
When evaluating all contracts we can say the two models are more accurate than
the status quo and the difference is not likely to be random. The SPI(t) metric appears in
both models reaffirming the research by Henderson (2004), Lipke (2004 & 2009),
Vandevoorde and Vanhoucke, (2006), and Crumrine (2013). Additionally, each of the
models had at least one time series based performance factor. Finally, the BEI appears in
both of the models. The BEI did not appear in the forecasting literature, nevertheless

these results suggest it is a valuable duration forecasting parameter.
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IDE Data Set (includes 7 of 10 contracts)

Table 20 shows the results of the analysis of the seven contracts with IDE data.
The two GPS OCX contracts and the AEHF contract did not have the IMS data suitable
for developing IDEs. For this analysis, the most accurate model exhibits an improvement
of 5.2% over the status quo (26.47% vs. 21.27%). Thirty-seven of the forty-three models
are more accurate than the status quo. The seven most accurate models are IDE based.
These results suggest Lofgren’s approach (IDE) is the most accurate technique in this
research. With the exception of regression (38.36%), the results fall within a range from
21.27% to 27.21%. Once again, many of the models were clustered. Analyzing all of the
models at once resulted in unequal variances. We truncated the analysis to include the
CPR PD and the most accurate models. The Levene test p-value was 0.3554, denoting
equal variance (see Appendix B, Figure 37). We conducted a Tukey-Kramer HSD
comparison of means to determine if the means were significantly different from each
other and the status quo. The results of this analysis are displayed in Figure 22;
examining the connecting letters report from top to bottom, eight models were
significantly different from the CPR PD (status quo). These models are outlined with a
blue box at the bottom of Figure 22. When evaluating the contracts with IDE data we can
conclude that these models are more accurate than the status quo and the difference is not
likely to be random. One model [IMS PD/ SPI(t) (T.S.)* BEI] identified as significantly

from the all contracts data set also appears here.
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Table 20: MAPE — IDE Data Set (includes 7 of 10 contracts)

IDE/ [SPI (T.S))] 21.27%
IDE/ [SPI(t)] 21.35%
IDE/ [SPI(t) (T.S.)] 21.40%
IDE/ [SPI] 21.50%
IDE/ [SPI(t) (T.S.)*BEI] 21.87%
IDE/ [SPI(t) (T.S.)*BEI (T.S.)] 21.89%
IDE 22.21%
IMS PD/ [SPI(t) (T.S.)*BEI] 22.95%
IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)] 22.98%
IMS PD/ [SPI(t) (T.S.)] 24.23%
IDE/ [SPI(T.S.)*CPI] 24.50%
IDE/ [SPI*CPI] 24.51%
IDE/ [SPI(T.S.)*CPI(T.S.)] 24.53%
IMS PD/ [SPI(1)] 24.60%
IMS PD/ [SPI*CPI*BEI(T.S.)] 25.01%
IMS PD/ [SPI*CPI*BEI] 25.06%
IMS PD/ [SPI(T.S.)] 25.21%
IMS PD/ [SPI(t)*CPI*BEI(T.S.)] 25.30%
IDE/ [SPI*CPI*BEI(T.S.)] 25.34%
IDE/ [SPI*CPI*BEI] 25.36%
IMS PD/ [SPI(t)(T.S.)*CPI(T.S.)] 25.41%
IMS PD/ [SPI(t)*CPI*BEI] 25.43%
IMS PD/ [SPI] 25.52%
IMS PD/ [SPI(t) T.S.*BEI(T.S.)*CPI(T.S.)] 25.57%
IMS PD/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 25.62%
IMS PD/ [SPI(T.S.)*CPI(T.S.)] 25.62%
IMS PD/ [SPI(t)*CPI] 25.72%
IDE/ [SPI(t)*CPI] 25.78%
IMS PD/ [SPI(t)*CPI(T.S.)] 25.79%
IMS PD/ [SPI*CPI] 25.89%
IMS PD/ [SPI(T.S.)*CPI] 25.89%
IMS PD/ [SPI(t)(T.S.)*CPI] 25.89%
IDE/ [SPI(t)(T.S.)*CPlI] 25.92%
IMS PD 25.94%
Kalman Filter 25.95%
IDE/ [SPI(t)*CPI(T.S.)] 25.95%
IDE/ [SPI(t)(T.S.)*CPI(T.S.)] 26.16%
CPR PD (status quo) 26.47%
IDE/ [SPI(t)*CPI*BEI(T.S.)] 26.75%
IDE/ [SPI(t)*CPI*BEI] 26.78%
IDE/ [SPI(t) (T.S.)*BEI(T.S.)*CPI(T.S.)] 27.19%
IDE/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 27.21%
Regression 38.36%
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Means Comparisons
Comparisons for all pairs using Tukey-Kramer HSD

Connecting Letters Report

Level Mean
CPR PD (Staus Quo) ¥¢ A 0.26468088
Kalman Filter A B 0.25946629
IMS PD A B 0.25940130
IDE/SPI*CPI ABC 0.24507131
IMS PD/SPI(t) (T.S.) ABC 0.24227828
IMS PD/SPI(t) (T.S.)*BEI (T.S.) ABC 0.22977423
IMS PD/SPI(t) (T.S.)"BEI B C 0.22945818
Independent Duration Estimate (IDE C 0.22208849
IDE/SPI(t) (T.S.)*BEI (T.S.) C 0.21894668
IDE/SPI(t) (T.S.)*BEI C 0.21872853
IDE/SPI C 0.21503841
IDE/SPI(t) (T.S.) C 0.21397974
IDE/SPI(t) C 0.21350324
IDE/ SPI(T.S.) C 0.21265981
Levels not connected by same letter are significantly different

Figure 22: Tukey-Kramer HSD - IDE Data Set (7 out of 10 contracts)

Non OTB Group (GPS OCX and WGYS)

Table 21 lists the MAPE for each model for contracts without an OTB (GPS OCX
and WGS). This does not include IDE models. OTB and non-OTB contracts were not
compared for the IDE analysis because of the limited dataset (2 non-OTBs and 5 OTBsS).
The most accurate model is an improvement of 2.17% over the status quo (25.50% vs.
23.33%). The range is relatively narrow, from 23.33% to 27.79%. The two models from
the all contracts analysis are also the most accurate here: IMS PD/ [SPI(t) (T.S.) *BEI
(T.S.)] and IMS PD/ [SPI(t) (T.S.)* BEI]. Analyzing all of the models at once resulted in
unequal variances. We truncated the analysis to include the CPR PD and the most
accurate model. The Levene test p-value was 0.1302, denoting equal variance (see
Appendix B, Figure 38). Next, we conducted a Tukey-Kramer HSD comparison of

means. According to the connecting letters report (Figure 23) the model was not
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significantly different from the status quo. Therefore we cannot conclude that any of
these models are better than the status quo when forecasting the duration of non-OTB
contracts (alpha = 0.05). One model [IMS PD/ SPI(t) (T.S.)* BEI] becomes statistically

different than the status quo if the alpha level is relaxed (alpha = 0.15) (Figure 24).

Table 21: MAPE - Non OTB Group (4 Contracts & 175 Observations)

Forecasting Model MAPE
IMS PD/ [SPI(t) (T.S.)*BEI] 23.33%
IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)] 23.57%
IMS PD/ [SPI(t) (T.S.)] 23.78%
IMS PD 24.35%
IMS PD/ [SPI(T.S.)] 24.41%
IMS PD/ [SPI(t)(T.S.)*CPI] 24.55%
IMS PD/ [SPI(t)] 24.77%
IMS PD/ [SPI(t)*CPI] 24.79%
IMS PD/ [SPI(t)*CPI*BEI (T.S.)] 24.84%
IMS PD/ [SPI(t)*CPI*BEI] 24.87%
IMS PD/ [SPI(t)*CPI (T.S.)] 24.93%
IMS PD/ [SPI] 25.18%
IMS PD/ [SPI(t) (T.S.)*CPI (T.S.)] 25.31%
IMS PD/ [SPI(t) T.S.*BEI (T.S.)*CPI (T.S.)] 25.31%
IMS PD/ [SPI(t) (T.S.)*BEI*CPI (T.S.)] 25.34%
Kalman Filter 25.38%
IMS PD/ [SPI*CPI*BEI (T.S.)] 25.43%
IMS PD/ [SPI*CPI*BEI] 25.46%
IMS PD/ [SPI (T.S.)*CPI (T.S.)] 25.46%
CPR PD (status quo) 25.50%
IMS PD/ [SPI*CPI] 25.95%
IMS PD/ [SPI(T.S.)*CPI] 26.19%
Regression 27.79%
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Means Comparisons
Comparisons for all pairs using Tukey-Kramer HSD

Confidence Quantile

q* Alpha
1.96680 0.05

Connecting Letters Report

Level Mean
CPR PD (status quo) A 0.25493771
IMS PD/ [SPI(t) (T.S.)"BE A 0.23333600

Levels not connected by same letter are significantly different

Figure 23: Tukey-Kramer HSD - No OTB

Means Comparisons
Comparisons for all pairs using Tukey-Kramer HSD

Confidence Quantile

q* Alpha
1.44272 0.15

Connecting Letters Report

Level Mean
CPR PD (status quo) A 0.25493771
IMS PD/ [SPI(t) (T.S.)*BE B 0.23333600

Levels not connected by same letter are significantly different

Figure 24: Tukey-Kramer HSD - No OTB (alpha = 0.15)

The difference is not as pronounced as the previous analysis and is more

susceptible to type | error (false positive). Why are the models less accurate for non-
OTB contracts? Possible explanations include: the schedule performance is more stable
for short and non-OTB contracts. The three shortest duration contracts were in this
analysis (25.0, 28.3, and 47.4 months). Another possible explanation is lower cost and
schedule growth for the non-OTB contracts. The four non-OTB contracts had an average
schedule growth of 60.8% (median = 59.2%) compared to 135.8% (median = 94.8%) for

the six OTB contracts. Additionally, the four non-OTB contracts had an average cost
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growth of 47.9% (median = 19.4%) compared to 170.5% (median = 147.8%) for the six
OTB contracts. Low schedule and cost growth may indicate better initial schedule
estimates and impact from management decisions. Therefore, there should be less room
for accuracy improvement over the status quo estimate. Short duration contracts may be
less uncertain than lengthier contracts because there is less time for changes and other
unforeseen issues. Contract length, OTBs, schedule growth, and cost growth are further

explored in the subsequent sections.

OTB Group (6 Contracts & 631 Observations)

Table 22 lists the MAPE for each model for contracts with at least one OTB. This
does not include IDE models. In this grouping the most accurate model is an
improvement of 3.16% over the status quo (26.32% vs. 23.16%). With the exception of
regression (38.83%) the models lie within a narrow range (23.16% to 26.32%).
Analyzing all of the models at once resulted in unequal variances. We truncated the
analysis to include the CPR PD and the most accurate models. The Levene test p-value
was 0.1305, denoting equal variance (see Appendix B, Figure 39). Next, we conducted a
Tukey-Kramer HSD comparison of means. The connecting letters report (Figure 25)
shows two models that are significantly different than the status quo: IMS PD/ [SPI(t)
(T.S.)*BEI] and IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)]. Both of the models are more
accurate than the status quo and have been among the most accurate models for each type

of analysis.
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Table 22: MAPE — OTB Group (6 Contracts & 631 Observations)

IMS PD/ [SPI(t) (T.S.)* BEI (T.S.)] 23.16%
IMS PD/ [SPI(t) (T.S.)* BEI] 23.18%
IMS PD/ [SPI* CPI* BEI(T.S.)] 24.24%
IMS PD/ [SPI* CPI* BEI] 24.26%
IMS PD/ [SPI(t) (T.S.)] 24.44%
IMS PD/ [SPI(1)] 24.53%
IMS PD/ [SPI(t)* CPI* BEI(T.S.)] 24.61%
IMS PD/ [SPI(t) (T.S.)* CPI(T.S)] 24.70%
IMS PD/ [SPI(t)* CPI* BEI] 24.71%
IMS PD/ [SPI(t) (T.S.) *BEI (T.S.)* CPI(T.S.)] 24.74%
IMS PD/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 24.77%
IMS PD/ [SPI (T.S.)*CPI (T.S.)] 24.94%
IMS PD/ [SPI (T.S.)* CPI] 25.00%
IMS PD/ [SPI* CPI] 25.06%
IMS PD/ [SPI(t)* CPI ] 25.15%
IMS PD/ [SPI(t)* CPI(T.S.)] 25.19%
IMS PD/ [SPI (T.S.)] 25.30%
IMS PD/ [SPI(t) (T.S.)* CPI] 25.38%
IMS PD/ [SPI] 25.39%
Kalman Filter 26.10%
IMS PD 26.16%
CPR PD (status quo) 26.32%
Regression 38.83%

Why is the accuracy improvement significant for contracts with OTBs, but not
non-OTB contracts? Contracts that undergo OTBs may have done so because the
original estimates were overly optimistic. The hypothesis is contracts with OTBs have
more potential for improved accuracy (over the status quo estimate). This relationship

will be examined further in the subsequent sections.
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Means Comparisons
Comparisons for all pairs using Tukey-Kramer HSD

Confidence Quantile

q* Alpha
2.72941 0.05

Connecting Letters Report

Level Mean
CPR PD (status quo) * A 0.26323106
IMS PD/ [SPI*CPI*BEI] A B 0.24257623
IMS PD/[SPI*CPI*BEL(T.S,)] A B 0.24210365
IMS PD/ [SPI(t) (T.S.)*BEI] B 0.23184532

IMS PD/ [SPI(t) (T.S.)*BEI (T.S. B 0.23139699
Levels not connected by same letter are significantly different

Figure 25: Tukey-Kramer HSD (OTB)

Individual Contracts

We have examined the forecasting models with a variety of groupings. A handful
of models have consistently appeared as the most accurate. Is there a single model that
dominates on the individual contract level? Table 23 lists the most accurate model for
each of the ten contracts along with the status quo model to illustrate the accuracy
improvement. Detailed accuracy results for each contract are listed in Appendix C,
beginning with Table 62 and Figure 43. Not surprisingly, no single model is the most
accurate for each contract. In fact, the same model was not the most accurate for any two
contracts. Of course similarities exist between the models and their parameters. Of note,
models with SPI(t) are among the most accurate in 7 of 10 contracts. Models with BEI
are among the most accurate in 5 of 10 contracts. Time series performance factors appear
in 6 of the 10 most accurate models. IDE based models are the most accurate in 6 out of
7 contracts where data were available. These results reinforce the previous analysis.

SPI(t) is a consistent performance factor for duration forecasting. BEI is not as strong,
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but has displayed validity in this research. Time series analysis can further enhance the

index based models. Finally, the IDE approach has routinely been the most accurate for

contracts with the available IMS data.

Program
GPS OCX

GPS OCX
WGS
MUQOS

NAVSTAR
GPS
NAVSTAR
GPS
NAVSTAR
GPS

WGS

AEHF

SBIRS
HIGH

Table 23: Most Accurate Model by Contract

Contract
FA8807-08-C-
0001
FA8807-08-C-
0003
FA8808-06-C-
0001
N00039-04-C-
2009
FA8807-06-C-
0003
FA8807-06-C-
0001
FA8807-06-C-
0004
FA8808-10-C-
0001
F04701-02-C-
0002
F04701-95-C-
0017

Final

Duration
25.0
28.3
47.4
55.9
86.8
87.1
88.1
96.3
165.0

241.8

Short Duration Contracts

Model

[IMS PD/ SPI(t) (T.S).*
BEI (T.S.)* CPI(T.S.)]
[IMS PD/ SPI(t)*CPI*
BEI]

[IDE/ SPI(t) (T.S.)*CPI]

[IDE/ SPI (T.S.)]

[IDE/ SPI(t) (T.S.)*BEI
(T.S)]

[IDE/ SPI(t) (T.S.)*BEI]
[IDE/ SPI ]

IDE

[IMS PD/ SPI(t)*CPI]

[IMS PD/ SPI(t) (T.S.)*
BEI (T.S.)]

CPRPD
(Status

Quo)
20.41%
25.71%
24.77%
19.23%
32.89%
33.05%
23.76%
29.33%
25.66%

24.63%

Best
Model
18.37%
21.98%
18.69%

7.87%
25.67%
24.45%
10.33%
19.53%

23.09%

21.88%

Delta
2.04%

3.73%

6.08%

11.36%

7.23%

8.60%

13.43%

9.79%

2.57%

2.76%

Because of differences in the length of contracts it is important to analyze them

separately to determine if any differences in accuracy exists. Reexamining Table 23

shows the short duration contracts (GPS OCX) and the long duration contracts (AEHF &

SBIRS) have the lowest accuracy improvement (2.04%, 2.57%, 2.76%, & 3.73%). We

conducted further analysis by grouping the contracts into short (GPS OCX), medium

(NAVSTAR GPS, MUQS, & WGS), and long duration contracts (AEHF & SBIRS).
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Table 24 shows the most accurate model is a 2.81% (23.24% vs. 20.43%) improvement
over the status quo for the short duration group.

Table 24: MAPE - Short Duration Contracts (GPS OCX)

Forecasting Model MAPE |
IMS PD/SPI(t) T.S.*BEI(T.S.)*CPI(T.S.) 20.43%
IMS PD/SPI(t)* BEI(T.S.)* CPI 20.56%
IMS PD/SPI(t) (T.S.)*BEI*CPI(T.S.) 20.56%
IMS PD/SPI*CPI*BEI(T.S.) 20.59%
IMS PD/SPI(t)*CPI*BEI 20.71%
IMS PD/SPI*CPI*BEI 20.73%
IMS PD/SPI(t) (T.S.)*BEI (T.S.) 20.75%
IMS PD/SPI(t) (T.S.)*BEI 20.88%
IMS PD/SPI(t)(T.S.)*CPI 22.27%
IMS PD/SPI(t)(T.S.)*CPI(T.S.) 22.36%
IMS PD/SPI(t)*CPI 22.54%
IMS PD/SPI*CPI 22.56%
IMS PD/SPI(T.S.)*CPI 22.60%
IMS PD/SPI(t)*CPI(T.S.) 22.61%
IMS PD/SPI(T.S.)*CPI(T.S.) 22.64%
IMS PD/SPI(t) (T.S.) 22.66%
IMS PD/SPI(t) 22.91%
IMS PD/SPI 22.94%
IMS PD/ SPI(T.S.) 22.95%
CPR PD (status quo) 23.24%
IMS PD 23.71%
Kalman Filter 24.64%
Regression 25.04%

The range of 20.43% to 25.04% is the narrowest range of the entire analysis.
Analyzing all of the models at once resulted in unequal variances. We truncated the
analysis to include the CPR PD and the most accurate model. The Levene test p-value
was 0.3337, denoting equal variance (see Appendix B, Figure 40). Next, we conducted a
Tukey-Kramer HSD comparison of means. The connecting letters report (Figure 26)

shows the most accurate model is not significantly different than the status quo. Relaxing
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the alpha does not separate the model from the status quo until an alpha of 0.27 (Figure

27). Atthis alpha level there is a much larger chance of type | error (false positive).

Means Comparisons
Comparisons for all pairs using Tukey-Kramer HSD

Confidence Quantile

q* Alpha
1.98729 0.05

Connecting Letters Report

Level Mean
CPR PD (status quo) A 0.23233556
IMS PD/ [SPI(t) T.S.*BEI(T.S.)*CPI(T.S. A 0.20425556
Levels not connected by same letter are significantly different

Figure 26: Tukey-Kramer HSD - Short Duration

Means Comparisons
Comparisons for all pairs using Tukey-Kramer HSD

Confidence Quantile

q* Alpha
1.11005 0.27

Connecting Letters Report

Level Mean
CPR PD (status quo) A 0.23233556
IMS PD/ [SPI(t) T.S.*BEI(T.S.)*CPI(T.S. B 0.20425556
Levels not connected by same letter are significantly different

Figure 27: Tukey-Kramer HSD - Short Duration (alpha = 0.27)

These results support the non-OTB group results. The two contracts analyzed do
not have OTBs. What factors are affecting the accuracy improvement? Is it the length of
the contract, OTBs, or a different parameter? We used regression analysis in an attempt
to provide a quantitative answer to this question. The regression results are reported after

the group analysis.
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Medium Duration Contracts

Table 25 displays the MAPE results for medium duration contracts (six contracts).
The most accurate model is an improvement of 7.8% over the status quo (27.43% vs.
19.63%). All of the forecasting models were better than the status quo except for

regression. The following seven IDE models that are significantly different than the

status quo:
e IDE
o IDE/[SPI]

e IDE/[SPI(t) (T.S.)]
e IDE/[SPI(t) (T.S.) * BEI (T.S.)]
e IDE/[SPI(1)]
e IDE/[SPI(t) (T.S.) * BEI]
e IDE/[SPI(T.S.)]
Analyzing all of the models at once resulted in unequal variances. We truncated
the analysis to include the CPR PD and the most accurate models. The Levene test p-
value was 0.9811, denoting equal variance (Appendix B, Figure 41). Next, we conducted
a Tukey-Kramer HSD comparison of means. The seven models highlighted by the blue
box in the connecting letters report (Figure 28) are significantly different from the status
quo.
Referring back to Table 23, each of the six contracts in this analysis had an IDE
based model as the most accurate model. When data is available, the IDE based methods

appears to be the most accurate.
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Table 25: MAPE - Medium Duration Contracts (MUOS, NAVSTAR GPS, & WGYS)

IDE/ SPI(T.S.) 19.63%
IDE/ [SPI(t) (T.S.)*BEI] 19.68%
IDE/ SPI(t) 19.71%
IDE/ [SPI(t) (T.S.)*BEI (T.S.)] 19.77%
IDE/ [SPI(t) (T.S.)] 19.79%
IDE/ SPI 19.99%
IDE 20.95%
IMS PD/ [SPI(t) (T.S.)*BEI] 23.42%
IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)] 23.55%
IDE/ [SPI(T.S.)*CPI] 24.10%
IDE/ [SPI*CPI] 24.10%
IMS PD/ [SPI(t) (T.S.)] 24.13%
IDE/ [SPI(T.S.)*CPI(T.S.)] 24.15%
IDE/ [SPI*CPI*BEI] 24.46%
IDE/ [SPI*CPI*BEI(T.S.)] 24.48%
IMS PD/ SPI(t) 24.68%
IMS PD/ [SPI(T.S.)] 25.63%
IDE/ [SPI(t)*CPI] 26.00%
IMS PD/ SPI 26.10%
IMS PD/ [SPI*CPI*BEI] 26.21%
IMS PD/ [SPI(t)(T.S.)*CPI(T.S.)] 26.21%
IMS PD/ [SPI*CPI*BEI(T.S.)] 26.22%
IDE/ [SPI(t)(T.S.)*CPI] 26.22%
IDE/ [SPI(t)*CPI(T.S.)] 26.26%
IMS PD 26.52%
IMS PD/ [SPI(T.S.)*CPI(T.S.)] 26.54%
IDE/ [SPI(t)*CPI*BEI] 26.57%
IDE/ [SPI(t)*CPI*BEI(T.S.)] 26.59%
IDE/ [SPI(t)(T.S.)*CPI(T.S.)] 26.59%
IMS PD/ [SPI(t)*CPI*BEI(T.S.)] 26.60%
IMS PD/ [SPI(t)*CPI] 26.66%
Kalman Filter 26.67%
IMS PD/ [SPI(t)*CPI*BEI] 26.72%
IMS PD/ [SPI(t)*CPI(T.S.)] 26.78%
IMS PD/ [SPI(t)(T.S.)*CPI] 26.93%
IMS PD/ [SPI*CPI] 26.93%
IMS PD/ [SPI(T.S.)*CPI] 26.94%
IMS PD/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 27.01%
IMS PD/ [SPI(t) T.S.*BEI(T.S.)*CPI(T.S.)] 27.01%
IDE/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 27.22%
IDE/ [SPI(t) (T.S.)*BEI(T.S.)*CPI(T.S.)] 27.25%
CPR PD (status quo) 27.43%
Regression 39.81%
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Means Comparisons
Comparisons for all pairs using Tukey-Kramer HSD

Confidence Quantile

q* Alpha
3.16547 0.05

Connecting Letters Report

Level Mean
CPR PD (Staus Quo)* A 0.27428963
IMS PD/SPI(t) (T.S.)*BEI (T.S.) A B 0.23554272
IMS PD/SPI(t) (T.S.)*BEI A B 0.23423630
Independent Duration Estimate (IDE B 0.20954840
IDE/SPI B 0.19986593
IDE/SPI(t) (T.S.) B 0.19789852
IDE/SPI(t) (T.S.)*BEI (T.S.) B 0.19768173
IDE/SPI(t) B 0.19706667
IDE/SPI(t) (T.S.)*BEI B 0.19678543
IDE/ SPI(T.S.) B 0.19626963
Levels not connected by same letter are significantly different

Figure 28: Tukey-Kramer HSD - Medium Duration

Why are the results different for short and medium duration contracts? The
medium duration models are more likely to have an OTB than the shorter contracts (4 of
6 compared to zero). Contracts with OTBs appear to have less accurate status quo
estimates compared to non OTB contracts. The effect of OTBs are explored further in
the regression analysis section. Regardless of the reason, there is clear evidence that any
of the seven IDE based models are the most accurate models for medium duration

contracts (47.4 to 96.3 months).

Long Duration Contracts
Table 26 displays the accuracy results for long duration contracts (AEHF and
SBIRS). The results were less substantial for the longer contracts with only a 2.13%

(25.05% vs. 22.92%) improvement over the status quo.
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Table 26: MAPE - Long Duration Contracts (AEHF & SBIRS)

IMS PD/ [SPI(t)*CPI*BEI(T.S.)] 22.92%
IMS PD/ [SPI(t) T.S.*BEI(T.S.)*CPI(T.S.)] 22.94%
IMS PD/ [SPI*CPI*BEI(T.S.)] 22.98%
IMS PD/ [SPI(t)*CPI*BEI] 23.01%
IMS PD/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 23.04%
IMS PD/ [SPI*CPI*BEI] 23.08%
IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)] 23.18%
IMS PD/ [SPI(t) (T.S.)*BEI] 23.28%
IMS PD/ [SPI(t)*CPI(T.S.)] 23.58%
IMS PD/ [SPI(t)(T.S.)*CPI(T.S.)] 23.59%
IMS PD/ [SPI(t)*CPI] 23.59%
IMS PD/ [SPI(t)(T.S.)*CPI] 23.59%
IMS PD/ [SPI(T.S.)*CPI] 23.68%
IMS PD/ [SPI(T.S.)*CPI(T.S.)] 23.68%
IMS PD/ [SPI*CPI] 23.69%
IMS PD/ SPI(t) 24.69%
IMS PD/ [SPI(t) (T.S.)] 24.70%
IMS PD/ SPI(T.S.) 24.78%
IMS PD/ SPI 24.78%
CPR PD (status quo) 25.05%
IMS PD 25.17%
Kalman Filter 25.27%
Regression 34.03%

Analyzing all of the models at once resulted in unequal variances. We truncated
the analysis to include the CPR PD and the most accurate model. The Levene test p-
value was 0.0714, denoting equal variance (Appendix B, Figure 42). Next, we conducted
a Tukey-Kramer HSD comparison of means. The connecting letters report (Figure 29)
shows the most accurate model is not significantly different than the status quo. After
relaxing the alpha (0.10) the most accurate model (IMS PD / [SPI(t)*CPI *BEI (T.S.)) is

significantly different than the status quo (Figure 30).
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Means Comparisons
Comparisons for all pairs using Tukey-Kramer HSD

Confidence Quantile

q* Alpha
1.96331 0.05

Connecting Letters Report

Level Mean
CPR PD (Status Quo) A 0.25047893
IMS PD/SPI(t)*CPI*BEI(T.S. A 0.22921011

Levels not connected by same letter are significantly different

Figure 29: Tukey-Kramer HSD - Long Duration

Means Comparisons
Comparisons for all pairs using Tukey-Kramer HSD

Confidence Quantile

q* Alpha
1.64700 0.1

Connecting Letters Report

Level Mean
CPR PD (Status Quo) A 0.25047893
IMS PD/SPI(t)*CPI*BEKT.S. B 0.22921011

Levels not connected by same letter are significantly different

Figure 30: Tukey-Kramer HSD - Long Duration (Alpha = 0.10)

Once again, a larger alpha means there is a greater chance of type | error.
Therefore, the difference between the most accurate model and the status quo is not as
pronounced as the prior analysis with a smaller alpha. Why is this the case? The
potential reasons are the most confounding of this analysis. For SBIRS, BEI data were
not available until 89 months into the contract (37% complete). BEI based models have
been among the best performers and each of the six models most accurate models here
contain a BEI parameter. SBIRS was the only contract out of seven (with IDE data) that
did not have an IDE based model as the most accurate. One reason may have been data

availability; IDE data was not available until 141 months (58% complete). For AEHF,
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IDE was not available at all. Furthermore, the first EVM data were not reported until 11
months into the contract. Another possibility, the schedule and cost performance factors
are not the drivers of schedule growth. Perhaps management decisions are driving the
cost and schedule growth of the longer contracts. Therefore enhancing the IMS PD with
performance factors will not drastically improve the estimate accuracy. Another factor to
consider, these program are not 100% complete. The forecast accuracy results will be
different if the actual completion date is different than the current planned completion

dates for AEHF and SBIRS: 06/30/2015 and 12/31/2016.

Sensitivity Analysis: Entire Data Set

In the next section what-if analysis is conducted because there is no single
dominant forecasting model. The scenario is what if we use the most accurate overall
model then examine how well it fares compared to the status quo for each contract.

Table 27 displays the what-if analysis for the most accurate IMS based model [(IMS PD /
(SPI(t) (T.S.) * BEI)] applied to all contracts (refer to Table 19 for the most accurate IMS
models).

Nine out of the ten contracts show an improvement in accuracy over the status
quo. The WGS contract (FA8808-10-C-0001) is the only contract in the entire analysis
where an IMS index based does not improve upon the status quo. This contract had high
CPI, SPI, and SPI(t) early in the contract (see Table 28). This resulted in the models
predicting the contract would be completed faster than the planned duration. This large

error could not be overcome by improved accuracy in the later periods.
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Table 27: Comparison of Status Quo vs. Most Accurate IMS Model
Non-OTB Contracts

[IMS PD/
CPRPD SPI(t) (T.S.) Signif.
Program Contract (status quo) *BEI] Delta difference
GPS OCX FA8807-08-C-0001 20.41% 18.87% 1.54% No
GPS OCX FA8807-08-C-0003 25.71% 22.65% 3.06% No
WGS FA8808-06-C-0001 24.77% 22.86% 1.91% No
WGS FA8808-10-C-0001 29.33% 30.90% -1.57% No
OTB Contracts
AEHF F04701-02-C-0002 25.66% 25.11% 0.55% No
MUQOS N00039-04-C-2009 19.23% 14.22% 5.01% Yes
NAVSTAR GPS FA8807-06-C-0001 33.05% 30.52% 2.53% No
NAVSTAR GPS FA8807-06-C-0003 32.89% 29.21% 3.69% No
NAVSTAR GPS FA8807-06-C-0004 23.76% 14.92% 8.84% Yes
SBIRS F04701-95-C-0017 24.63% 22.03% 2.60% No

Table 28: WGS (FA8808-10-C-0001) — Index Values

Month  CPI CPI SPI SPI SPI(t)  SPI(t)
Count (T.S.) (T.S) (T.S.)

1 1.215 1.215 1.166 1.166 1.204 1.204

2 1.231 1.223 1.328 1.247 1.417 1.311

3 1.231 1.226 1.475 1.629 1.289 1.303

4 1.195 1.218 1.351 1.330 1.266 1.324

5 1.165 1.170 1.302 1.325 1.217 1.279

6 1.124 1.108 1.256 1.347 1.249 1.274

7 1.112 1.121 1.307 1.393 1.234 1.268

8 1.095 1.113 1.284 1.343 1.197 1.259

9 1.081 1.083 1.255 1.350 1.188 1.251

10 1.081 1.097 1.207 1.264 1.149 1.241

11 1.077 1.094 1.208 1.262 1.149 1.129

12 1.059 1.051 1.182 1.225 1.147 1.100

Because of the similarities in accuracy the IMS model was only significantly

different than the status quo in two out of ten contracts. Despite less than overwhelming
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results, the best IMS based model [(IMS PD / (SPI(t) (T.S.) * BEI)] is no worse in eight

of ten contracts and more accurate in two of ten contracts.

Sensitivity Analysis: IDE Data Set
Table 29 displays another what-if scenario. This time, we choose to use one of
the most accurate overall models [IDE/ SPI(t)] for contracts with IDE data. The result is

an improvement in all seven contracts.

Table 29: Comparison of Status Quo vs. Most Accurate Model with IDE Data

CPR PD IDE/ Signif.

Program Contract (status quo)  SPI(t) Delta Diff.
Non-OTB Contracts
WGS FA8808-06-C-0001 24.77% 20.05% 4.72% Yes
WGS FA8808-10-C-0001 29.33% 21.65% 7.68% Yes
OTB Contracts

MUOS N00039-04-C-2009 19.23% 8.29% 10.94% Yes
NAVSTAR GPS FA8807-06-C-0001 33.05% 25.98% 7.07% Yes
NAVSTAR GPS FA8807-06-C-0003 32.89% 26.71% 6.18% No
NAVSTAR GPS FA8807-06-C-0004 23.76% 13.25%  10.51% Yes
SBIRS F04701-95-C-0017 24.63% 24.49% 0.14% No

A very small improvement was achieved in SBIRS (0.14%). However, a more
substantial improvement (4.72% to 10.94%) was achieved for the other contracts. Five of
the seven contracts have improved accuracy and the model is significantly different than
the status quo. Obviously, SBIRS was not significantly different (0.14% difference).

The primary reason was previously discussed (IDE data not available until 58%
complete). At first glance, NAVSTAR GPS (FA8807-06-C-0003) was expected to be
significantly different (6.18%). Upon closer inspection, IDE data were not available until

18 months into the contract (26% complete). Another IDE data lapse occurred from
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month 52 to 71. Thus, the status quo and IDE / SPI(t) are more similar for this contract

than the accuracy results would suggest.

Regression Analysis

The results of the preceding analysis exhibited differences between the accuracy

of the CPR PD (status quo), IMS models, and IDE models. Why do these differences

occur? How does the length of the contract, OTBs, budget size, cost growth, and

schedule growth affect duration estimate accuracy? We used regression analysis in an

attempt to provide quantitative answers to these questions. First, we divided the dataset

into the following dependent variables and data sets:

CPR PD Accuracy (All Contracts)

Most Accurate Model for Each Contract (All Contracts)

Most Accurate Model for the Seven Contract with IDE Data (7 of 10 contracts)
IMS Delta Compared to CPR PD (All Contracts)

IDE Delta Compared to CPR PD (7 of 10 contracts)

IDE Delta Compared to IMS (7 of 10 contracts)

Table 30 lists the data set for this analysis. Table 31 through Table 36 summarize the

results of the regression analysis. Each of the models met the following diagnostics:

Studentized residuals check for outliers (no observations greater than 3 standard
deviations)

Cook’s D influence (less than 0.5)

Shapiro-Wilk test for Normality of Residuals (p-value greater than 0.05)

Breusch-Pagan test for heteroscedasticity (p-value greater than 0.05)
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The supporting documentation for the regression analysis and diagnostics is located in

Appendix D, beginning with Figure 53.

Program
AEHF

GPS OCX
GPS OCX
MUOS
Navstar GPS
Navstar GPS
Navstar GPS
SBIRS

WGS

WGS

Table 31 shows the regression results for the accuracy of the CPR PD (status
quo). The accuracy of the status quo estimate was correlated with the reciprocal of

schedule growth (1/schedule growth). This transformation is non-linear, as schedule

Table 30: Regression Analysis Data Set

Contract
F04701-02-C-0002
FA8807-08-C-0001
FA8807-08-C-0003
N00039-04-C-2009
FA8807-06-C-0001
FA8807-06-C-0003
FA8807-06-C-0004
F04701-95-C-0017
FA8808-10-C-0001
FA8808-06-C-0001

Initial BAC
(BY973)

2395.9M
119.0M
118.6M
70.3M
20.8M
29.8M
47.8M
1663.6M
115.2M
295.8M

Final BAC
(BY973)

5481.6M
142.5M
141.0M
77.1M
94.0M
79.5M
86.9M
6383.6M
120.6M
734.3M

OTBs
3

o o AP MM P, W O O

CPR
PD

(%)
25.7
20.4
25.7
19.2
33.1
32.9
23.8
24.6
29.3
24.8

Regression Analysis: CPR PD (status quo) Accuracy

IMS
(%0)

23.1
18.4
22.0
14.0
25.1
26.1
14.9
21.9
29.5
20.3

IDE
(%)
N/A
N/A
N/A
7.9
245
25.7
103
24.4
195
18.7

growth increases the CPR PD accuracy decreases at a diminishing rate (Figure 31). To

reiterate a discussion from chapter one, the largest sources of schedule growth are

estimating errors or decisions affecting the schedule. For these ten contracts, schedule

growth may occur if the initial estimates are overly optimistic and/or decisions are made

that affect the schedule. In theory, greater schedule growth (regardless of the reason)

leads to less schedule data fidelity resulting in less accurate status quo schedule estimates.
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Table 31: CPR PD (status quo) Accuracy
Cook’s Shapiro Breusch-

Model t Std D Wilk p-  Pagan p- Median
Term(s) AdjR? p-value ratio Beta (<0.5) wvalue value MAPE APE
1/Sched i i Yes 0 0
Growth 0.5835 0.0061 3.7 0.79 (0.25) 0.4501 0.7794 8.3% 7.9%

Regression Plot
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Figure 31: CPR PD
Regression Analysis: IMS and IDE Accuracy
Table 32 and Table 33 list the regression results for the accuracy of the IMS

models (all contracts) and IDE data set respectively.

Table 32: Most Accurate Models - All Contracts
Cook’s Shapiro Breusch-
Model t Std D Wilk p- Pagan p- Median
Term(s) AdjR?> p-value ratio Beta (<0.5) value value  MAPE  APE

OTB &

Sched i ) Yes . .
Growth 0.5391  0.0094 -34 -0.77 (0.29) 0.9402 0.2756  10.1% 6.9%
DV

The most significant parameter for both data sets was the combination of at least
one OTB and low schedule growth (less than 62%) into one indicator variable (two

contracts in this cohort). The two contracts satisfying both of these conditions

99



experienced increased accuracy gains. As previously discussed, high schedule growth
may be the result of estimate errors and decisions. Consequently, lower schedule growth
may indicate better initial estimates and management decisions are playing a lesser role.
Therefore, the data may better explain the contract’s performance leading to more

accurate schedule estimates (IMS and IDE models).

Table 33: Most Accurate Model — IDE Data Set
Cook’s Shapiro Breusch-
Model t Std D Wilk p-  Pagan p- Median
Term(s) AdjR? p-value ratio Beta (<0.5) value value  MAPE  APE
OTB &

SChEd B | Yes . .
Srain 0.8260 0.0029 5.4 0.92 (0.27) 0.3235 0.3696 13.0% 12.2%

DV

On the other hand, OTBs may confound our results. Our earlier analysis showed
contracts with an OTB exhibited improved accuracy compared to contracts without an
OTB. That result is also supported by the regression analysis. Due to the complexity of
MDAPs and our limited data set it is difficult to tease out simple explanations. OTB
research from 2010 concluded contracts undergoing an OTB did not improve cost
performance (Jack, 2010). However, cost estimate research from 2009 found increased
accuracy for estimating the EAC of OTB contracts (Trahan, 2009). The regression
results from our analysis suggest some contracts that undergo an OTB may gain fidelity
in EVM schedule indices and the integrated master schedule (IMS). This potential
fidelity may be detected by the IMS PD and IDE models, but not the status quo. If this is
true, the models researched here may be more useful for OTB contracts. Further research

is necessary to provide a more definitive answer.
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Regression Analysis: IMS Accuracy Delta
Examining the difference between the IMS models and the CPR PD vyields
slightly different results (Table 34). If a program has just one OTB there is an increase in
accuracy (IMS over status quo). This result may support the hypothesis that having one

OTB is beneficial, but undergoing additional OTBs does not improve schedule

performance.
Table 34: IMS Delta (All Contracts)
Cook’s Shapiro Breusch-
Model t Std D Wilk p- Pagan p- Median
Term(s) AdjR? p-value ratio Beta (<0.5) value value  MAPE  APE
10TBDV 04956 00139 31 0.74 (ggg) 09705  0.2974  280%  28.8%

Regression Analysis: IDE Accuracy Delta

The summary regression results for the IDE delta data set are listed in Table 35.
Having schedule growth under 62% and one OTB was significant. Both variables
increased the accuracy delta (IDE compared to status quo). The 1 OTB dummy variable
by itself was no longer significant and the schedule growth dummy variable had a
stronger impact than the 1 OTB DV. The schedule growth dummy variable (under 62%)
by itself was significant (three contracts). Once again, high schedule growth may be the
result of estimating errors and/or decisions. Therefore, lower schedule growth may
indicate the opposite, leading to better data fidelity. A more thorough explanation is
beyond the scope of this research, further research is necessary to explore this
relationship. Whatever the reasons, the accuracy improvement (over status quo) is more

pronounced for contracts with low schedule growth and one OTB.
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Table 35: IDE Delta (7 of 10 contracts)

Model t
Term(s) Adj R?> p-value ratio
« Sched 0.7574  0.0262 3.8
Growth DV
«10OTB DV 2.1
« Sched 0.5923 0.0263 3.1
Growth DV

Cook’s Shapiro Breusch-

Std D Wilk p-  Pagan p-

Beta (<0.5) value value MAPE

0.77 Yes 0.6839 0.7690 21.4%
(0.46)

0.42

0.81 No 0.7642 0.5318  28.8%
(0.51)

Regression Analysis: IDE — IMS Accuracy Delta

Median
APE
7.5%

14.7%

The summary regression results for the IDE - IMS data set are listed in Table 36.

The difference between IDE and IMS accuracy is the greatest when cost growth is low.

The larger the natural log of a contract’s cost growth, the lower the increase in accuracy

(IDE - IMS). Because it’s a natural log transformed parameter, the effect diminishes as

the cost growth increases (see Figure 32 for a visual depiction).

Table 36:
Model
Adj p- t

Term(s) R’ value ratio
« Log (Cost 0.923 0.0027 -8.6
Growth)
.1 0TB DV 2.6
« Log (Cost 0.838 0.0024 5.7
Growth)

IDE — IMS Accuracy Delta

Cook’s Shapiro Breusch-

Std D Wilk p- Pagan p-

Beta (<0.5) value value MAPE

-1.04 Yes 0.5255 0.4964  37.0%
(0.43)

0.31

-0.93 Yes 0.8707 0.6268 72.0%
(0.45)

Median
APE
20.4%

42.0%

Why do larger cost growth contracts exhibit a smaller advantage for the IDE

models (over the IMS models)? One possible explanation is cost growth is similar to

schedule growth; if large cost growth occurs, management decisions may be playing a

larger role in explaining the schedule than the contract’s data. Contracts with high cost

growth may lose schedule data fidelity; therefore the IDE models lose their accuracy
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advantage over the IMS models. On the other hand, low cost growth may have the

opposite effect and better data fidelity. Once again, contracts with only one OTB have a

slight accuracy gain. This result may further support the hypothesis that having one OTB

is beneficial, but more than one is not. Additional research is necessary to explore the

relationship between OTBs, cost growth, and schedule estimate accuracy.

Regression Plot
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Regression Analysis Summary
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Figure 32: IDE - IMS Accuracy Delta

In summary, OTBs, schedule growth, and cost growth were the dominant

variables explaining the accuracy of the duration estimating models (listed in Table 37).

Response
CPR PD Accuracy

IMS Accuracy
IDE Accuracy

IMS - CPR PD Delta
IDE — CPR PD Delta

IDE — IMS Delta

Improves Accuracy
Low schedule growth

Contracts with an OTB and
schedule growth under 62%
Contracts with an OTB and
schedule growth under 62%
Contracts with OTB =1

Contracts with schedule growth
under 62% and OTB =1
Low cost growth
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Table 37: Variables Effect on Accuracy

Reduces Accuracy
Increasing schedule growth
reduces accuracy at a
diminishing rate (non-linear)
Contracts with OTB # 1 and
schedule growth over 62%
Contracts with OTB # 1 and
schedule growth over 62%
Contracts with OTB # 1

Contracts with schedule growth
over 62% and OTB # 1
Increasing cost growth reduces
accuracy at a diminishing rate
(non-linear)



Schedule growth is correlated with less accuracy for the CPR PD (status quo). The
accuracy of the IMS PD and IDE models is correlated with OTBs and schedule growth.
The accuracy improvement between the IMS models and the CPR PD is largest for
contracts with one OTB. The accuracy improvement between IDE and the CPR is largest
for contracts with one OTB and low schedule growth (less than 62%). Finally, the
accuracy improvement between IDE and IMs is greatest for low cost growth contracts. It
should be noted there are substantial limitations with the regression results; the sample
size is small and there are many possible explanations for the differences in the accuracy
delta besides the variables examined here. We cannot conclude that OTBs, schedule
growth, and cost growth directly impact the duration estimate accuracy, but they are
correlated for our data set. The relationships are discussed here to provide a quantitative
explanation for differences in the accuracy of the duration estimates and may serve as a

guide to help practitioners decide when to use each model.

Forecast Model Timeliness

The next section discusses the timeliness of the IMS forecasts. Table 38 displays
the MAPE over time intervals (from 0% to 100%). Table 38 is highlighted with a heat
map: dark green is favorable (10th percentile), yellow is average (50th percentile), and
dark red is unfavorable (90th percentile). The more dark green present, the more accurate
the model. Each of the models exhibit improved accuracy as the contract matures. Early
in a contract there is more uncertainty, therefore the early estimates are inherently less

accurate than later estimates. The status quo is one of the least accurate methods (red)
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from 0% to 70%. The lack of accuracy for status quo estimates may be the result of early
estimating errors or management decisions as previously discussed. From 0 to 60%
complete the IMS/ (SPI(t)*CPI*BEI) based metrics are the most accurate (including time
series variations). These models are the most pessimistic because they contain three
performance factors; most of the contracts experienced less than favorable cost and
schedule performance (index values less than one). With the exception of the WGS
Block 2 Follow On contract, the contracts in this analysis did not have favorable metrics
in the early periods. Therefore, the pessimistic duration estimates were higher than the
status quo. The accuracy of pessimistic models should be no surprise considering every
contract experienced schedule growth. The pessimistic models incorporate performance
factors and detect schedule growth earlier than the status quo method. Therefore, using a
pessimistic forecast model in the early periods (0 to 60%) should improve the accuracy of
duration estimates.

From 61% to 70% the most accurate models are: IMS PD/ (SPI(t)*BEI) and IMS
PD/ (SPI*CPI*BEI) (including time series). These models are less pessimistic, but still
incorporate cost and schedule performance into the model. The difference between the
most accurate model from 0% to 60% [IMS/ (SPI(t)*CPI*BEI)] and 61% to 70% [IMS
PD/ (SPI(t)*BEI)] is the removal of the CPI. The other model [IMS PD/ (SPI*CPI*BEI)]
replaces SPI(t) with SPI and is therefore a less pessimistic model because SPI begins to
converge to 1 as the program matures. As a contract matures the (relatively) less
pessimistic models become more accurate. From 71% to 100% complete the following
models are the most accurate: IMS PD, IMS PD/ SPI(t) (including time series) and IMS

PD/ SPI (including time series). At this point in the contract the performance factors (SPI
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and SPI(t)) were close to one (contract is on schedule); therefore they are not improving
the accuracy of the basic IMS PD. On the other end of the spectrum, the most accurate
models from 0% to 60% are now the worst performers.

Table 38: MAPE at Time Intervals (All Contracts)

Percent Complete Interval
11to [ 21to | 31to | 41to | 51to |61lto [ 71to [81lto |91to

Forecasting Model Oto10| 20 30 40 50 60 70 80 90 | 100
CPR PD (status quo) 5.0%
IMSPD
IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)] 48.2%| 46.6%)| 37.5%| 31.2%| 25.5%| 18.9% 6.0%
IMS PD/ [SPI(t) (T.S.)*BEI(T.S.)*CPI(T.S)] | 47.9% 37.0% 15.2%
IMS PD/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 47.9% 37.0% 15.2%
IMS PD/ [SPI(t) (T.S.)*BEI] 48.2%| 46.5%| 37.5%| 31.3%] 25.6%| 18.9% 6.1%
IMS PD/ [SPI(t) (T.S.)] 48.4%| 47.0%| 37.8% 14.7%
IMS PD/ [SPI(t)(T.S.)*CPI(T.S.)] 48.1% 30.7%| 26.7%| 19.6% 12.2%| 5.1%
IMS PD/ [SPI(t)(T.S.)*CPI] 48.2%| 46.2% 30.5%| 26.1%]| 19.7% 14.0%| 4.9%
IMS PD/ [SPI(t)*CPI(T.S.)] 46.4%| 37.4%| 30.6%| 26.29%| 19.1%| 15.5%| 14.2%| 5.0%
IMS PD/ [SPI(t)*CPI*BEI(T.S.)] 46.2% 14.9%
IMS PD/ [SPI(t)*CPI*BEI] 48.0% 15.0%
IMS PD/ [SPI(t)*CPI] 46.5%( 37.2%| 30.9%]| 26.3%] 18.9%| 15.1%| 14.2%| 4.8%
IMS PD/ [SPI(T.S.)*CPI(T.S.)] 48.0%| 46.8%| 37.1%| 30.5%)| 26.6%| 21.0%| 13.9%] 13.1%| 5.0%| 10.1%
IMSPD/ [SPI(T.S.)*CPI] 48.1%| 46.8%| 37.1%]| 30.8%| 26.7%| 21.0%| 14.1%| 13.0%
IMS PD/ [SPI*CPI*BEI(T.S.)] 46.4%
IMS PD/ [SPI*CPI*BEI] 46.3% 10.1%
IMS PD/ [SPI*CPI] 48.0%)| 46.8%)| 37.1%| 31.0%| 26.7%| 21.0%| 13.9%| 13.19| 4.7%}
IMSPD/ SPI 48.1% 37.8%
IMS PD/ SPI(t) 47.9%
IMS PD/ SPI(T.S.) 48.3% | 3.4%)]
Kalman
Regression

The next section discusses the timeliness of the IDE and IMS forecasts for the
seven contracts with IDE data. Table 39 and Table 40 display the MAPE over time
intervals (from 0% to 100%). There is not a single dominant model across the all
intervals. This discussion should provide insight into which models perform best at

certain intervals.

106



Table 39: MAPE at Time Intervals (with IDE Data)

Percent Complete Interval
11to | 21to [ 31to | 41to [ 51to |61to | 71to |8lto |91to

Forecasting Model
CPR PD (status quo)

IMSPD
IMS PD/ SPI(T.S)

IMS PD/SPI

IMS PD/SPI(t)

IMS PD/ [SPI(t) (T.S)*BEI] 0%| 48. 31.6%| 24.2%

IMS PD/ [SPI(t) (T.S.)*BEI (T.S)] 50.0%| 48.2% 31.3%| 24.3%

IMS PD/ [SPI(t) (T.S)*BEI*CPI(T 5] 30.0%| 22.1%

IMS PD/SPI(t) TS,

IMS PD/ [SPI(t) T.S*BEI(T.S)*CPI(T.S)] 14.6%
IMS PD/ [SPI(t)(T.S.)*CPI(T.S)]

IMS PD/ [SPI(t)(T.S)*CPI] 37.4%

IMS PD/ [SPI(t)*CPI]

IMS PD/ [SPI(t)*CPI(T.S.)]
IMS PD/ [SPI(t)*CPI*BEI] 30.3%| 22.4%
IMS PD/ [SPI(t)*CPI*BEI(T.S.)] 30.1%)| 22.6%
IMS PD/ [SPI(T.S.)*CPI(T.S.)]
IMS PD/ [SPI(T.S.)*CPI]

IMS PD/ [SPI*CPI]

IMS PD/ [SPI*CPI*BEI] . 30.5%] 23.0%| 15. 15.8%
IMS PD/ [SPI*CPI*BEI(T.S.)] : 30.3%] 23.0%| 15. 15.3%

From 0% to 60% the status quo is among the least accurate. The 0% to 10%
interval MAPEs are close across the board with the IMS PD based metrics having a slight
edge. From 11% to 60% completion the following models are the most accurate:

e IDE/ (SPI(t)*BEI) (including time series)

e IDE/ (SPI*CPI*BEI) (including time series)
This result is similar to the prior section’s analysis. However, these performance factors
are less pessimistic than the SPI(t)*CPI*BEI. The IDE by itself is a pessimistic model
because it modifies the IMS PD by adding the schedule slip. Applying a moderately

pessimistic performance factor to the IDE will further improve the forecast accuracy.
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From 61% to 80% complete the following models are the most accurate: 1DE,

IDE/ SPI(t), and IDE/ SPI. Again, the results are similar to the prior section’s analysis,

less pessimistic performance factors become more accurate as the contract matures.

From 81% to 100% complete the following models are the most accurate: IMS PD, IMS

PD/ SPI(t), and IMS PD/ SPI. Once again, as the program matures to the later stages the

basic forecast is among the most accurate. Over the same time interval many of the IDE

based metrics lose their accuracy advantage because they are overestimating duration.

Table 40: MAPE at Time Intervals (with IDE Data)

Percent Complete Interval

11to | 21to | 31to | 41to

Forecasting Model 0to10| 20
IDE 50.7%| 48.2%
IDE/SPI(T.S.) 48.2%
IDE/SPI 48.4%
IDE/SPI(t) 50.9%)| 48.1%
IDE/ [SPI(t) (T.S.)*BEI (T.S.)] 51.0%| 47.8%
IDE/SPI(t) (T.S.) 51.0%| 48.0%
IDE/ [SPI(t) (T.S.)*BEI] 51.0%
IDE/ [SPI(t) (T.S.)*BEI(T.S.)*CPI(T.S.)]
IDE/ [SPI(t) (T.S.)*BEI*CPI(T.S.)]
IDE/ [SPI(t)(T.S.)*CPI] 47.7%
IDE/ [SPI(t)(T.S.)*CPI(T.S.)] 47.8%
IDE/ [SPI(t)*CPI] 47.9%
IDE/ [SPI(t)*CPI(T.S.)] 48.0%
IDE/ [SPI(t)*CPI*BEI]
IDE/ [SPI(t)*CPI*BEI(T.S.)] 47.7%
IDE/ [SPI(T.S.)*CPI] 50.5%| 47.9%
IDE/ [SPI(T.S.)*CPI(T.S.)] 50.6%)| 48.0%
IDE/ [SPI*CPI] 48.2%
IDE/ [SPI*CPI*BEI]
IDE/ [SPI*CPI*BEI(T.S.)] 48.1%
Kalman Filter 50.8%
Regression
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Validating the Cost Estimating Model

The final area of analysis applies a duration estimate to the BCWP burn rate
model in order to assess the cost estimate accuracy. This section is ancillary to the
primary research, but is related to the overall research objective. The genesis of this
research was to improve the accuracy of the BCWP based cost estimate by improving the
accuracy of the duration estimate. Due to time constraints only one of the duration
models was tested. This model [IMS PD / (SPI(t)*CPI)] was selected due its simplicity
and relative ease of calculation. The five contracts listed in Table 41 were added to the
original database to validate the cost model.

Table 41: Additional Contracts for Cost Model Validation

Program Contract Type
FAB-T (Family of Beyond Line-of-Sight Terminals) F19628-02-C-0048 RDT&E
MUOS (Mobile User Objective System) N00039-04-C-2009 | RDT&E
GPS OCX (Next Generation Control Segment) FA8807-10-C-0001  RDT&E
MGUE (Military GPS User Equipment) FA8807-12-C-0011 | RDT&E
EELV (Evolved Expendable Launch Vehicle) FA8811-13-C-0001  Production

FAB-T is a completed contract and met the initial screening parameters, but it was
reported as 61% complete therefore it was not included in the schedule database. MUOS
was not readily available via DCARC, but was obtained from the author of the AFCAA
study (Keaton, 2014). The data were obtained too late in the research process to be
included in the schedule database; however, the data could be included in the cost
estimate validation. MGUE and GPS OCX Phase B were eliminated in the original
schedule data filter because they were not complete or near complete (at least 90%).

These contracts were included in the cost estimate validation to test the model on less
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mature contracts (less than 90% complete). Finally, EELV was selected to test the model
on a completed production contract.

Three cost estimating models were analyzed:

e Reported EAC: [Contractor reported EAC]
e BCWHP1: [CPR PD and Actual Time] (Keaton, 2014)
e BCWP2: [IMS PD / (SPI(t)*CPI) and actual time]

The Reported EAC is a base case for comparison purposes. BCWPL1 is the model
from the AFCAA research (Keaton, 2014). BCWP2 uses the same BCWP burn rate and
actual BCWP to date as BCWP1. However, BCWP2 applies a duration model estimate
from this research. The cost estimate MAPE is calculated as follows:

Equation 46: Final EAC MAPE

(EACFinal - EACForecast) *

MAPE =
EACFinal

100

Table 42 shows the summary accuracy statistics. BCWP2 is more accurate
overall (MAPE), at the median (Median APE), from 0 to 70% complete, and from 20 to
70% complete. The 20 to 70% completion interval is reported here because this was the
interval from the AFCAA study (Keaton, 2014). Overall, the BCWP2 model displayed
an accuracy improvement of 7.1% over the reported EAC and 6.5% over BCWP1.

Figure 33 shows a visual depiction of the MAPE from the final reported EAC at 10%
time intervals. BCWP?2 is the most accurate model from contract initiation to
approximately 80% complete. BCWPL1 experiences an uptick at the 60% mark. A deeper
analysis discovered the WGS Block 2 contract was the reason for BCWP1’s uptick.

BCWHP1 uses the CPR PD as its duration estimate. In WGS Block 2, at roughly the 50%
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completion point, the CPR PD begins to drastically overestimate the contract’s duration.
Figure 34 shows the effect of truncating WGS Block 2 at the 50% point. BCWP 1
exhibits a better behaved trajectory once WGS block 2 is truncated. Rather than using a
potentially inaccurate CPR PD, the risk could be mitigated by simply using the IMS PD
in the BCWP1 model.

Table 42: Accuracy Summary for EAC Forecasting Methods
Reported

Reported EAC BCWP1
Metric EAC BCWP1 Delta Delta
MAPE 25.0% 24.4% 17.9% 7.1% 6.5%
Median APE 24.2% 21.2% 17.0% 7.2% 4.2%
MAPE (0 to 70%o) 32.9% 28.5% 21.0% 11.9% 7.6%
MAPE (20 to 70%0) 28.6% 24.8% 16.3% 12.3% 8.6%

Table 43 shows the EAC accuracy results for individual contracts; BCWP2 is
more accurate than the reported EAC in 13/15 contracts and more accurate than BCWP1
in 14/15 contracts. Logically, when the CPR PD estimate is more accurate we would
expect the BCWP1 to be more accurate than BCWP2 because BCWP1 uses CPR PD as
its duration estimate. An interesting phenomenon occurred in the MUOS-2 and EELV
contracts. The CPR PD was the more accurate duration estimate for these two contracts;
however, BCWP2 was the more accurate cost estimate compared to the reported EAC
and BCWP2. Why did this occur? Time constraints were an obstacle to providing a
satisfactory explanation therefore further research is needed to investigate the relationship

between duration accuracy and EAC accuracy with the BCWP model.
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Table 43: EAC Forecasting Accuracy — Individual Contracts

Final Duration MAPE Final EAC MAPE
Contract IMS PD Reported
CPR PD /SPI(t)* CPI EAC BCWP1 BCWP2
GPS MUE-1 33.0% 25.0% 35.6% 29.5% 19.9%
GPS MUE-3 32.8% 28.5% 37.9% 25.2% 22.0%
GPS MUE-4 22.7% 21.0% 31.6% 21.2% 8.7%
GPS OCX -1 20.4% 19.9% 13.9% 13.1% 12.4%
GPS OCX-3 22.7% 22.0% 15.8% 16.4% 15.0%
WGS B2FO 29.3% 36.2% 2.7% 25.9% 17.2%
WGS Block 2 24.8% 20.8% 17.6% 45.2% 17.0%
MUQOS-1 20.3% 34.4% 24.2% 37.1% 28.8%
AEHF 25.7% 23.1% 31.6% 20.3% 16.9%
SBIRS 24.7% 24.0% 39.8% 31.0% 31.4%
FAB-T 8.3% 3.6% 25.9% 18.0% 12.2%
MUQOS-2 8.6% 9.6% 22.5% 19.9% 18.5%
EELV 5.7% 9.0% 23.7% 16.8% 14.4%
MGUE 23.0% 15.3% 16.5% 20.6% 14.9%
GPS OCXB 21.0% 15.1% 35.4% 24.9% 18.6%
MAPE vs. % Complete
50%
45% A
S 40%
‘;; g 35%
L
§ = 30%
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Figure 33: MAPE for EAC Forecasting Methods vs. % Complete

112
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Figure 34: MAPE for EAC Forecasting Methods vs. % Complete [Truncated WGS]

V.

Absolute Percent Error
(from FinalEAC)

The final analysis is an attempt to provide a more tangible explanation of cost
estimate accuracy, this accuracy metric is in dollars rather than MAPE. We converted the
mean absolute percent errors (MAPES) into an average estimating error in dollars. The
MAPE for each contract and cost estimating model were multiplied by the final EAC
(converted to FY15%). For reference, the total final EAC portfolio cost was $25.7B
(FY15%). Figure 35 displays the average cost estimating error for the three models; both
the BCWP1 and BCWP2 outperform the EAC. BCWP2 outperforms the EAC by $1.73B
and BCWP1 by $0.82B or ($820 million). We caution that these funds are not
necessarily savings or potential realizable savings. The BCWP2 model would have
provided a more accurate cost estimate to the tune of $820 million (on average) for this

portfolio.
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Figure 35: Average Cost Estimate Error (in $B FY15)

Summary

Many of the models reported in this chapter demonstrated improved accuracy
over the status quo estimating method, particularly the IDE models. The models were
accurate for both OTB and non-OTB contracts. However, short duration contracts
without OTBs did not display significantly different results than the status quo. The
results were significant for long duration contracts, but less pronounced (alpha = 0.10)
than the medium duration contracts (alpha = 0.05). Our regression analysis showed
OTBs, schedule growth, and cost growth affected the accuracy of the models. In regards
to timeliness, the improvement is most substantial up to the 80% completion point; the

accuracy improvement is greater when IDE data is available. For both duration data sets
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(IDE and non IDE) the IMS PD is the most accurate model from 80% to 100%
completion.

One duration model [IMS PD / (SPI(t)*CP1)] was tested and validated for
accuracy in the BCWP burn rate model. The BCWP2 model proved more accurate than
the reported EAC and BCWP1 model. The next chapter discusses the policy implications

from these results, recommendations, and future research avenues.
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V. Conclusions and Recommendations

Investigative Questions Answered

The overall research objective is to evaluate forecasting methods for space
contract duration based on the following criteria: accuracy, reliability, and timeliness. In
support of the overarching research objective, the following questions were investigated.
Our first question was, “What are the appropriate methods to estimate a program’s
duration?” The methods from the literature include index based, regression, Kalman-
Filter, and IMS analysis (to develop IDEs). The new contributions of this research are
the addition of the BEI and time series analysis to the index based approach, the Kalman-
Filter application to DoD programs, and applying the IMS analysis to space programs.

Our second question was, “How should accuracy be measured and how accurate
are the various schedule estimating methods (individual contract, overall, and by various
groupings)?” This question represented the bulk of the research. Many accuracy
measures were researched, but the MAPE was selected for its applicability across sample
sizes and ease of communicating the results. In regards to accuracy, no single model was
dominant across all contracts. Of note, the Kalman Filter method did not achieve
significant improvements over the status quo and the regression approach was the worst
performing model overall. Therefore these methods, as researched here, should be
eliminated from consideration. The IDE based models are the most accurate. Combining
IDE with the SPI and SPI(t) based performance factors further enhances the accuracy.
This analysis shows that the best IDE model is 5.2% more accurate than the status quo

(Table 20). If IDE data is not available the best IMS PD model [IMS PD / SPI(t)
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(T.S.)*BEI] offered a modest, but significant 2.63% improvement (Table 19). The
duration estimating models did not demonstrate significantly different accuracy
(compared to the status quo) for short duration contracts. Unfortunately, one limitation
of this analysis was the lack of IDE data for the short duration contracts. Medium
duration contracts had the largest improvement at 7.80% (Table 25). Of note, each of the
medium duration contracts had IDE data. The long duration contracts were significantly
different (alpha = 0.10) than the status quo, but the difference was less pronounced than
the medium duration contracts. Finally, regression analysis conducted on the model
accuracy detected correlation between OTBs, schedule growth, and cost growth.
Contracts with one OTB, low schedule growth, and/or low cost growth were correlated
with increased accuracy.

Our third question was, “At what point in time (if at all) are the new techniques
more accurate than the status quo?” In regards to timeliness, the improvement is most
pronounced up to the 80% completion point and the accuracy improvement is greater
when IDE data is available. The most pessimistic forecast models were accurate early on
(0% to 60%). As the contracts matured (61 to 80%), moderately pessimistic models were
more accurate. For both data sets (IDE and non IDE) the IMS PD is the most accurate
model from 80% to 100% completion.

Our fourth and last question was, “Are the forecasts accurate for programs with
one or more over target baseline (OTB)?” The forecast models offer improved accuracy
for programs with OTBs. In fact, the forecasts for OTB programs improve the accuracy
(over the status quo) by a larger margin than non OTB programs (3.17% vs. 2.16%). The

hypothesis is contracts with OTBs may improve the fidelity of their schedule data
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compared to non-OTB contracts. Undergoing one OTB seems to be beneficial.
However, undergoing multiple OTBs did not improve the duration estimate accuracy.

The genesis of this research was to gauge the accuracy of the status quo method
and if possible, improve upon that method. The next step was to determine when (if at
all) the accuracy improves over the status quo, and finally, if the models were accurate
for OTB contracts. We can definitively conclude that relying on the CPR reported ECD
(status quo) is not the best course of action. In fact, simply verifying the dates reported in
the IMS is a more accurate method (25.77% compared to 26.14%). Using the IMS PD
and EVM indices resulted in a 2.93% accuracy improvement. The potential exists for a
larger accuracy improvement (5.2%) when IDE data is available. IMS PD/PF and IDE
models are more accurate than the status quo up to the 80% completion point, past this
point the accuracy advantage fades. Time series analysis improved accuracy, but not by a
significant amount. The Kalman Filter method did not improve accuracy over the status
quo. Finally, the regression approach was by far the least accurate model.

A late addition to this research was the validation of the BCWP based cost
estimate model. One duration model [IMS PD / (SPI(t)*CPI)] combined with the BCWP
burn rate model (BCWP2) outperformed the standard BCWP model (BCWP1) on each
accuracy metric. BCWP2 outperforms BCWP1 from 0 to 100% complete. Furthermore,

BCWP?2 outperforms the reported EAC from 0 to 80% completion.

Recommendations
This research found multiple methods that improve the accuracy of duration

estimating for space and development contracts. The improved duration estimates can be
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used with the BCWP burn rate cost estimate model to further improve the accuracy of
cost estimates. Additionally, program managers can take corrective action sooner
because the IMS and IDE models exhibit accuracy gains up to the 80% completion point.
Three IDE methods are recommended if IDE data is available: IDE, IDE/SPI,
and IDE/SPI(t). One disadvantage associated with developing the IDE models is the
process is not as simple as using the IMS PD and performance factors. An additional
obstacle is the IDE methodology is relatively new, therefore it will probably not be an
accepted best practice for some time. If IDE data does not exist, the IMS PD/ (SPI(t) *
BEI) model is recommended because of its simplicity and accuracy. Because they did
not offer significant improvement, models with time series based performance factors are
not recommended unless the user has access to software comparable to JMP® 11.
Finally, the BCWP?2 cost estimate model was validated with fifteen space
contracts. This model is recommended because it provided substantial accuracy
improvement over both the reported EAC and the BCWP1 model. At a minimum, the

BCWP2 model should be used as a cross check for other cost estimating methods.

Recommendations for Future Research

A variety of future research avenues exist. The schedule research was conducted
on space and development contracts. Expanding the data set to other commodity and
contract types is a logical first step. Another logical step is to test the combination of the
AFCAA study’s cost model (BCWP1) and additional duration models from this research.
Additional research opportunities are derived from fine-tuning the methodology. First,

the prediction intervals from the Kalman Filter and time series analysis could be used to
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develop optimistic and pessimistic forecasts. Restricting the time series analysis to a
shorter time frame, for example using 12 months of data at a time, would give more
weight to recent performance. Additionally, the OTBs could be incorporated into the
time series analysis instead of resetting the analysis after each OTB. In regards to
regression, two approaches should be considered: obtaining more data to discover new
schedule estimating relationships (SERS) or using current SERs to build a regression
model. This regression model could be used to develop an initial duration estimate, then
techniques from this research could be used to enhance the duration estimate with EVM

data.
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Appendix A: Data Adjustments

Table 44: Data Adjustments - AEHF (F04701-02-C-0002)

Completion
Report Date Date ECD Adjustment
2/23/2003 1/25/2009 Used reported completion date (1/25/09)
3/30/2003 1/25/2009 Used reported completion date (1/25/09)
8/31/2003 1/25/2009 Used reported completion date (1/25/09)
12/30/2007 5/31/2011 Used reported completion date (5/31/11)
9/25/2011 12/31/2013 Used reported completion date (12/31/13)
4/29/2012 9/30/2013 Used reported completion date (9/30/13)
Table 45: Program: GPS OCX (FA8807-08-C-0001)
Report Completion
Date Date ECD Adjustment
12/28/2007 4/30/2009 Used the reported completion date for ECD (4/30/09)
2/1/2008 5/30/2009 Used the reported completion date for ECD (5/30/09)
2/29/2008 5/30/2009 Used the reported completion date for ECD (5/30/09)
3/28/2008 5/30/2009 Used the reported completion date for ECD (5/30/09)
5/2/2008 5/30/2009 Used the reported completion date for ECD (5/30/09)
5/30/2008 5/30/2009 Used the reported completion date for ECD (5/30/09)
6/27/2008 5/30/2009 Used the reported completion date for ECD (5/30/09)
Table 46: Program: GPS OCX (FA8807-08-C-0003)
Report Start
Date Date ECD Adjustment
Did not use this month’s data. It appears to be from a
3/28/2010 | 2/25/2010 | 3/31/2016 | different contract: different contract start date from the
other data points (11/21/07)
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Table 47: Months with Missing IDE Data MUOS (N00039-04-C-2009)

Report
Date

2/22/2009
3/29/2009
4/26/2009
2/24/2013
3/31/2013
4/28/2013
5/26/2013
6/30/2013
7/28/2013
8/25/2013

Table 48: Data Adjustments - NAVSTAR GPS (FA8807-06-C-0001)

Report
Date ECD Adjustment
7/28/2006 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
9/1/2006 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
9/29/2006 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
10/27/2006 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
12/1/2006 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
12/29/2006 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
2/2/2007 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
3/2/2007 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
3/30/2007 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
4/27/2007 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
6/1/2007 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
6/29/2007 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
7/27/2007 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
8/31/2007 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
9/28/2007 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
11/2/2007 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
11/30/2007 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
12/28/2007 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
2/1/2008 Used IMS reported completion date (11/2/09) from first IMS 2/20/08
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Table 49: Months with Missing IDE Data - NAVSTAR GPS (FA8807-06-C-0001)
Report
Date
7/28/2006

9/1/2006
9/29/2006
10/27/2006
12/1/2006
12/29/2006
2/2/2007
3/2/2007
3/30/2007
4/27/2007
6/1/2007
6/29/2007
7/27/2007
8/31/2007
9/28/2007
11/2/2007
11/30/2007
12/28/2007
2/1/2008
2/29/2008
5/30/2008
6/27/2008
8/1/2008
12/3/2010
12/31/2010
1/28/2011
2/25/2011
4/1/2011
4/29/2011
6/3/2011
7/1/2011
7/29/2011
9/2/2011
9/30/2011
3/30/2012
2/1/2013
3/1/2013
3/29/2013
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Table 50: Data Adjustments - NAVSTAR GPS (FA8807-06-C-0001)

Report
Date

BAC

BCWS

BCWP

ACWP

Notes

5/30/2008

71,098,080,040

43,439,985,020

40,962,631,470

45,463,954,240

Inconsistent values. Verified amount
should be millions (July 2013 Format 3).

6/27/2008

71,098,077,750

45,894,059,080

43,977,857,780

48,645,986,660

Corrected values (divided by 1000)

8/29/2008

72,389,214,760

50,872,327,110

50,602,492,380

54,705,923,800

Corrected values (divided by 1000)

11/7/2008

72,434,559,250

57,014,389,560

56,527,728,370

61,614,545,870

Corrected values (divided by 1000)

1/2/2009

72,736,320,630

60,263,855,720

59,003,046,410

64,426,448,100

Corrected values (divided by 1000)

1/30/2009

74,290,042,550

61,257,442,270

60,301,225,820

66,099,221,580

Corrected values (divided by 1000)

2/27/2009

74,253,744,010

62,243,481,210

61,407,136,860

67,728,083,900

Corrected values (divided by 1000)

4/3/2009

74,746,177,020

63,523,323,150

62,653,351,860

69,959,445,080

Corrected values (divided by 1000)

5/29/2009

75,916,157,950

66,466,698,820

64,821,227,730

72,251,147,020

Corrected values (divided by 1000)

7/31/2009

76,049,327,110

68,531,432,140

67,633,591,370

75,258,526,470

Corrected values (divided by 1000)

8/28/2009

76,077,136,590

70,424,503,960

69,449,895,160

77,092,417,090

Corrected values (divided by 1000)

1/1/2010

76,017,437,990

73,275,299,700

72,369,324,180

81,844,861,410

Corrected values (divided by 1000)

1/29/2010

76,023,959,900

73,592,144,180

72,759,835,470

83,188,966,060

Corrected values (divided by 1000)

2/26/2010

75,667,517,120

73,678,546,600

72,992,968,390

84,534,934,370

Corrected values (divided by 1000)

4/30/2010

75,667,511,550

74,123,735,390

73,359,370,260

87,256,865,430

Corrected values (divided by 1000)

7/2/2010

26,397,443

26,397,443

26,397,568

30,025,268

Did not use this month's data. Data
appears to be fromdifferent contract.

7/30/2010

75,721,045,370

74,308,069,770

73,973,581,820

90,033,758,670

Corrected values (divided by 1000)

8/27/2010

75,721,045,370

74,358,623,460

74,216,251,400

90,603,357,170

Corrected values (divided by 1000)

12/3/2010

75,721,047,790

74,384,289,790

74,382,668,930

91,484,071,110

Corrected values (divided by 1000)

12/31/2010

75,721,048,970

74,384,289,790

74,382,668,930

91,573,441,170

Corrected values (divided by 1000)

1/28/2011

75,721,048,970

74,384,290,970

74,384,413,000

91,783,913,030

Corrected values (divided by 1000)

2/25/2011

75,721,048,970

74,384,290,970

74,384,413,000

91,953,844,170

Corrected values (divided by 1000)

4/1/2011

75,721,049,010

74,384,293,380

74,384,415,410

92,093,863,310

Corrected values (divided by 1000)

4/29/2011

75,721,049,010

74,384,291,010

74,384,414,220

92,337,336,560

Corrected values (divided by 1000)

6/3/2011

75,721,049,010

74,384,291,010

74,384,414,220

92,398,331,150

Corrected values (divided by 1000)

7/29/2011

75,721,050,220

74,384,291,010

74,384,414,220

92,429,535,010

Corrected values (divided by 1000)

9/30/2011

111,254,427,970

80,334,888,200

79,646,618,390

97,153,544,210

Corrected values (divided by 1000)

3/30/2012

121,909,362,420

103,471,362,310

103,728,019,060

107,298,090,770

Corrected values (divided by 1000)

4/27/2012

122,029,968,270

104,860,494,760

104,932,474,730

108,230,414,990

Corrected values (divided by 1000)

6/1/2012

122,102,957,260

106,700,407,470

106,483,744,560

109,668,903,710

Corrected values (divided by 1000)

6/29/2012

121,953,566,350

107,996,524,900

108,043,514,270

111,240,130,270

Corrected values (divided by 1000)

8/3/2012

122,300,124,770

109,718,335,580

109,193,583,820

112,705,700,500

Corrected values (divided by 1000)

8/31/2012

122,259,444,490

110,894,265,980

110,686,336,810

114,634,671,950

Corrected values (divided by 1000)

9/28/2012

121,917,682,130

112,802,176,580

112,884,996,410

116,898,310,100

Corrected values (divided by 1000)

11/30/2012

122,093,327,350

114,728,468,640

114,958,572,800

118,866,848,350

Corrected values (divided by 1000)

2/1/2013

122,063,787,150

117,242,810,500

116,642,266,010

120,415,610,630

Corrected values (divided by 1000)

3/1/2013

123,543,730,230

117,907,830,010

117,514,885,230

121,381,259,310

Corrected values (divided by 1000)

3/29/2013

123,387,178,960

118,400,041,350

118,104,891,740

121,999,091,410

Corrected values (divided by 1000)

5/3/2013

123,555,159,450

119,429,196,680

119,349,668,270

123,132,402,880

Corrected values (divided by 1000)

5/31/2013

123,578,144,670

120,241,157,130

119,934,629,250

123,684,311,600

Corrected values (divided by 1000)

6/28/2013

23,530,727,520

10,179,436,740

10,118,731,740

10,051,101,890

Did not use this month's data. Data
appears to be fromdifferent contract:
different start date (9/28/12 vs. 5/26/06)

8/2/2013

123,625,515,410

121,876,840,320

121,406,668,960

125,104,405,170

Corrected values (divided by 1000)
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Table 51: Data Adjustments - NAVSTAR GPS (FA8807-06-C-0003)

Report Date

Completion Date

ECD

Adjustment

11/24/2006 10/30/2007 Used the reported Completion date of 10/30/07
12/29/2006 10/30/2007 Used the reported Completion date of 10/30/07
1/26/2007 10/30/2007 Used the reported Completion date of 10/30/07
2/23/2007 10/30/2007| Used the reported Completion date of 10/30/07
3/30/2007| 10/30/2007| Used the reported Completion date of 10/30/07
4/27/2007, 10/30/2007| Used the reported Completion date of 10/30/07
5/25/2007| 10/30/2007 Used the reported Completion date of 10/30/07
6/29/2007 10/30/2007 Used the reported Completion date of 10/30/07
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Table 52: Months with Missing IDE Data - NAVSTAR GPS (FA8807-06-C-0003)

Report Date

11/24/2006
12/29/2006
1/26/2007
2/23/2007
3/30/2007
4/27/2007
5/25/2007
6/29/2007
7/27/2007
8/24/2007
9/28/2007
10/26/2007
11/23/2007
12/28/2007
1/25/2008
2/22/2008
3/28/2008
4/25/2008
12/31/2008
2/25/2011
4/1/2011
4/29/2011
5/27/2011
7/1/2011
7/29/2011
8/26/2011
9/30/2011
10/28/2011
11/25/2011
12/30/2011
1/27/2012
2/24/2012
3/30/2012
4/27/2012
5/25/2012
6/29/2012
7/27/2012
8/24/2012
9/28/2012
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Table 53: Data Adjustments - NAVSTAR GPS (FA8807-06-C-0004)

Report Start
Date Date ECD Adjustment
Did not use data from this month. It appears to be from a
11/18/07 | 6/26/06 |12/31/07 [different contract: different start date (6/26/06 vs. 6/02/06).
12/31/07 | 6/02/06 Used next month’s ECD (1/12/11).

Table 54: Months with Missing IDE Data - NAVSTAR GPS (FA8807-06-C-0004)

Report
Date

12/31/2007
1/27/2008
2/24/2008
5/25/2008
8/24/2008
6/28/2009
7/25/2010
2/26/2012

10/26/2012
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Table 55: Months with Missing IDE Data — WGS Blk 2 (FA8808-06-C-0001)

Report Date

11/30/2006
12/21/2006
1/25/2007,
2/22/2007
3/29/2007
4/26/2007
5/31/2007
6/28/2007
7/26/2007
8/30/2007
9/27/2007,
10/25/2007|
11/29/2007,
12/20/2007,
1/31/2008
2/28/2008
3/27/2008
4/24/2008
4/26/2012
5/31/2012
6/28/2012
7/26/2012
8/30/2012
9/27/2012
10/25/2012
11/29/2012
12/20/2012
1/31/2013
2/28/2013
3/28/2013
4/25/2013
5/30/2013
6/27/2013
7/25/2013
8/29/2013
9/26/2013
10/31/2013
11/28/2013
12/19/2013
1/30/2014]
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Table 56: Months with Missing IDE Data - WGS B2FO (FA8808-10-C-0001)

Report Date

10/28/2010

11/25/2010

12/23/2010

11/28/2013

12/19/2013

1/30/2014

2/27/2014

3/27/2014

4/24/2014

Table 57: Additional Data - SBIRS (F04701-95-C-0017)

Notes

Additional data (from 12/1/96 until 7/26/2004) was provided by
the author of the AFCAA research (Keaton, 2014).

Table 58

: Data Adjustment — SBIRS (F04701-95-C-0017)

Report
Date

Original BAC

Prior BAC

Adjusted BAC

Next BAC

Adjustment

8/29/04

3,311,589,000

5,259,883,000

5,274,890,122

5,317,410,300

Adjusted BAC with
linear interpolation
for regression
forecast.

1/29/06

4,206,867,200

5,675,887,300

5,920,741,440

6,173,757,384

Adjusted BAC with
linear interpolation
for regression
forecast.

12/30/07

5,414,927,378

6,555,123,944

6,725,182,546

6,906,578,389

Adjusted BAC with
linear interpolation
for regression
forecast.
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Table 59: Months with Missing IDE Data — AEHF (F04701-02-C-0002)

Report Date

1/1/1997 1/1/2000 1/1/2003 1/29/2006
2/1/1997 2/1/2000 2/1/2003 2/26/2006
3/1/1997 3/1/2000 3/1/2003 3/26/2006
4/1/1997 4/1/2000 4/1/2003 4/30/2006
5/1/1997 5/1/2000 5/1/2003 5/28/2006
6/1/1997 6/1/2000 6/1/2003 6/25/2006
7/1/1997 7/1/2000 7/1/2003 7/30/2006
8/1/1997 8/1/2000 8/1/2003 8/27/2006
9/1/1997 9/1/2000 9/1/2003 9/24/2006

10/1/1997 10/1/2000 10/1/2003 10/29/2006

11/1/1997 11/1/2000 11/1/2003 11/26/2006

12/1/1997 12/1/2000 12/1/2003 12/31/2006
1/1/1998 1/1/2001 1/1/2004 1/28/2007
2/1/1998 2/1/2001 2/1/2004 2/25/2007
3/1/1998 3/1/2001 3/1/2004 3/25/2007
4/1/1998 4/1/2001 4/1/2004 4/29/2007
5/1/1998 5/1/2001 5/1/2004 5/27/2007
6/1/1998 6/1/2001 6/1/2004 6/24/2007
7/1/1998 7/1/2001 7/1/2004 7/29/2007
8/1/1998 8/1/2001 8/29/2004 8/26/2007
9/1/1998 9/1/2001 9/26/2004 9/30/2007

10/1/1998 10/1/2001 10/31/2004 10/28/2007

11/1/1998 11/1/2001 11/28/2004 11/25/2007

12/1/1998 12/1/2001 12/26/2004 12/30/2007
1/1/1999 1/1/2002 1/30/2005 1/27/2008
2/1/1999 2/1/2002 2/27/2005 2/24/2008
3/1/1999 3/1/2002 3/27/2005 3/30/2008
4/1/1999 4/1/2002 4/24/2005 4/27/2008
5/1/1999 5/1/2002 5/29/2005 5/25/2008
6/1/1999 6/1/2002 6/26/2005 6/29/2008
7/1/1999 7/1/2002 7/31/2005
8/1/1999 8/1/2002 8/28/2005
9/1/1999 9/1/2002 9/25/2005

10/1/1999 10/1/2002 10/30/2005

11/1/1999 11/1/2002 11/27/2005

12/1/1999 12/1/2002 12/25/2005
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Table 60: Data Adjustment — WGS Block 2 (FA8808-06-C-0001)

Report
Date
11/30/2006
12/21/2006

1/25/2007
2/22/2007
3/29/2007
4/26/2007
5/31/2007
6/28/2007
7/26/2007
8/30/2007
9/27/2007
10/25/2007
11/29/2007
12/20/2007
1/31/2008
2/28/2008
3/27/2008
4/24/2008
4/26/2012
5/31/2012
6/28/2012
7/26/2012
8/30/2012
9/27/2012
10/25/2012
11/29/2012
12/20/2012
1/31/2013
2/28/2013
3/28/2013
4/25/2013
5/30/2013
6/27/2013
7/25/2013
8/29/2013
9/26/2013
10/31/2013
11/28/2013
12/19/2013
1/30/2014

131



Table 61: Months with Missing IDE Data - WGS B2FO (FA8808-10-C-0001)

Report Date

10/28/2010
11/25/2010
12/23/2010
11/28/2013
12/19/2013
1/30/2014
2/27/2014
3/27/2014
4/24/2014
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Appendix B: Levene Tests for Tukey-Kramer HSD

Tests that the Variances are Equal
0.20
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Metri
MeanAbsDif MeanAbsDif
Level Count Std Dev to Mean to Median
CPR PD (Status Quo) 806 0.1730312 0.1456448 0.1446919
IMS PD 806 0.1755445 0.1460916 0.1455804
IMS PD/SPI(t) 806 0.1734472 0.1446154 0.1445243
IMS PD/SPI(t) (T.S.) 806 0.1730525 0.1445527 0.1445527
IMS PD/SPI(t) (T.S.)*BEI 806 0.1730828 0.1462842 0.1461087
IMS PD/SPI(t) (T.S.)*BEI (T.S.) 806 0.1745397 0.1480904 0.1480036
IMS PD/SPI(t) T.S.*BEI(T.S.)*CPI(T.S 806 0.1748482 0.1438965 0.1423427
IMS PD/SPI(t)*CPI*BEKT.S.) 806 0.1742713 0.1424038 0.1410266
IMS PD/SPI*CPI*BEI(T.S.) 806 0.1740052 0.1422498 0.1409024
Test F Ratio DFNum DFDen Prob >F
QO'Brien[.5] 0.0435 8 7245 1.0000
Brown-Forsyth 0.4652 8 7245 0.8813
Levene 0.3106 8 7245 0.9624
Bartlett 0.0428 8 1.0000

Figure 36: Levene Test (All Contracts)
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Tests that the Variances are Equal

MeanAbsDif MeanAbsDif
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Mode
Level Count Std Dev to Mean
CPR PD (Staus Quo) 617 0.1817221 0.1533071
IDE/ SPI(T.S.) 617 0.1824486 0.1509054
IDE/SPI 617 0.1835454 0.1534774
IDE/SPI(t) 617 0.1846534 0.1551278
IDE/SPI(t) (T.S.) 617 0.1837609 0.1535651
IDE/SPI(t) (T.S.)*BEI 617 0.1758765 0.1425820
IDE/SPI(t) (T.S.)*BEI (T.S.) 617 0.1788637 0.1467136
IDE/SPI*CPI 617 0.1899886 0.1585321
IMS PD 617 0.1851526 0.1541202
IMS PD/SPI(t) (T.S.) 617 0.1828119 0.1525956
IMS PD/SPI(t) (T.S.)*BEI 617 0.1830886 0.1552107
IMS PD/SPI(t) (T.S.)*BEI (T.S.) 617 0.1848241 0.1575064
Independent Duration Estimate (IDE 617 0.1818675 0.1503748
Kalman Filter 617 0.1815860 0.1484729
Test F Ratio DFNum DFDen Prob>F
O'Brien[.5] 0.3522 13 8624 0.9833
Brown-Forsyth 1.4554 13 8624 0.1259
Levene 1.0975 13 8624 0.3554
Bartlett 0.3777 13 0.9771

Figure 37: Levene Test (IDE Contracts)
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Tests that the Variances are Equal

0.15
8 0.10 -
E
9 0.05 -
0.00 T
CPR PD (status quo) 'IMS PD/ [SPI(t) (T.S.)
*BEI]
Mode
MeanAbsDif MeanAbsDif
Level Count Std Dev to Mean to Median
CPR PD (status quo) 175 0.1196852 0.1056706 0.1055749
IMS PD/ [SPI(t) (T.S.)*BE 175 0.1454320 0.1209870 0.1209034
Test F Ratio DFNum DFDen p-Value
O'Brien[.5] 11.5163 1 348 0.0008 *
Brown-Forsyth 4.1645 1 348 0.0420 *
Levene 4.3111 1 348 0.0386 *
Bartlett 6.5456 1 . 0.0105*
F Test 2-sided 1.4765 174 174 0.0105*
Welch's Test

Welch Anova testing Means Equal, allowing Std Devs Not Equ
F Ratio DFNum DFDen Prob >F
2.3019 1 335.58 0.1302
t Test
1.5172

Figure 38: Levene Test (Non-OTB Contracts)
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Tests that the Variances are Equal
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Mode
MeanAbsDif MeanAbsDif
Level Count Std Dev to Mean to Median
CPR PD (status quo) 631 0.1851624 0.1565559 0.1543387
IMS PD/ [SPI(t) (T.S.)*BEI (T.S. 631 0.1804367 0.1535036 0.1526426
IMS PD/ [SPI(t) (T.S.)*BEI] 631 0.1801032 0.1532729 0.1524323
IMS PD/ [SPI*CPI*BEI (T.S.)] 631 0.1777332 0.1454737 0.1423555
IMS PD/ [SPI*CPI*BEI] 631 0.1775436 0.1449411 0.1419983
Test F Ratio DFNum DFDen Prob>F
O'Brienl[.5] 0.3651 4 3150 0.8336
Brown-Forsyth 1.9989 4 3150 0.0920
Levene 1.7775 4 3150 0.1305
Bartlett 0.3652 4 . 0.8335

Figure 39: Levene Test (OTB Contracts)
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Tests that the Variances are Equal
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Mode
MeanAbsDif MeanAbsDif
Level Count Std Dev to Mean to Median
CPR PD (status quo) 45 0.1243291 0.1070653 0.0939889
IMS PD/ [SPI(t) T.S.*BEI(T.S.)*CPI(T.S. 45 0.1105880 0.0952114 0.0896911
Test F Ratio DFNum DFDen p-Value
O'Brien[.5] 1.1538 1 88 0.2857
Brown-Forsyth 0.0572 1 88 0.8115
Levene 0.9448 1 88 0.3337
Bartlett 0.5954 1 . 0.4403
F Test 2-sided 1.2639 44 44 0.4403

Figure 40: Levene Test - Short Duration (GPS OCX)
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Tests that the Variances are Equal
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Mode
MeanAbsDif MeanAbsDif
Level Count Std Dev to Mean to Median
CPR PD (Staus Quo) 405 0.1843967 0.1532158 0.1512249
IDE/ SPI(T.S.) 405 0.1869670 0.1476684 0.1397057
IDE/SPI 405 0.1888509 0.1518587 0.1428074
IDE/SPI(t) 405 0.1903794 0.1547366 0.1476904
IDE/SPI(t) (T.S.) 405 0.1892029 0.1531040 0.1481079
IDE/SPI(t) (T.S.)*BEI 405 0.1858878 0.1487672 0.1441393
IDE/SPI(t) (T.S.)*BEI (T.S.) 405 0.1899459 0.1538366 0.1488180
IMS PD/SPI(t) (T.S.)*BEI 405 0.1859238 0.1507246 0.1504936
IMS PD/SPI(t) (T.S.)*BEI (T.S.) 405 0.1879186 0.1531470 0.1531494
Independent Duration Estimate (IDE 405 0.1849328 0.1461983 0.1398417
Test F Ratio DFNum DFDen Prob>F
O'Brien[.5] 0.0694 9 4040 0.9999
Brown-Forsyth 0.5402 9 4040 0.8461
Levene 0.2767 9 4040 0.9811
Bartlett 0.1040 9 0.9996

Figure 41: Levene Test - Medium Duration (NAVSTAR GPS, MUOS, & WGS)
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Tests that the Variances are Equal
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Mode
MeanAbsDif MeanAbsDif
Level Count Std Dev to Mean to Median
CPR PD (Status Quo) 356 0.1639028 0.1426005 0.1413340
IMS PD/SPI(t)*CPI*BEI(T.S. 356 0.1501078 0.1275090 0.1234601
Test F Ratio DFNum DFDen p-Value
O'Brien[.5] 6.0815 1 710 0.0139*
Brown-Forsyth 7.2917 1 710 0.0071*
Levene 6.3842 1 710 0.0117 *
Bartlett 2.7367 1 . 0.0981
F Test 2-sided 1.1922 355 355 0.0981
Welch's Test

Welch Anova testing Means Equal, allowing Std Devs Not Equ
F Ratio DFNum DFDen Prob >F
3.2602 1 704.58 0.0714
t Test
1.8056

Figure 42: Levene Test - Long Duration (AEHF & SBIRYS)
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Appendix C: Duration Accuracy Results (Individual Contracts)

Table 62: NAVSTAR GPS (FA8807-06-C-0001) Accuracy Results

Forecasting Model

IDE /

Percent | CPR PD IMSPD / SPI(t)
Complete | (status SPI(t) * (T.S)* Regress- | Kalman

Interval quo) IMS PD IDE CPI * BEI BEI ion Filter

0to 10| 52.72% | 52.72% | 52.72% 37.76% 49.55% 74.58% | 52.72%
111020 | 52.72% | 52.72% | 52.72% 42.05% 47.91% 80.11% | 52.72%
21t030 | 51.75% | 51.75% | 51.75% 43.07% 42.10% 63.11% | 48.86%
31t040 | 50.26% | 50.45% | 43.34% 42.26% 40.10% 52.74% | 52.42%
41t050 | 47.04% | 46.95% | 29.00% 36.40% 23.83% 52.29% | 46.07%
51t060 | 40.82% | 41.84% | 17.38% 21.41% 7.72% 53.17% | 44.53%
61to70 | 19.57% | 19.57% | 14.61% 7.03% 6.86% 50.60% | 35.93%
71t080 | 11.16% | 11.16% | 11.16% 5.03% 10.06% 40.89% | 27.36%
81 to 90 0.00% 0.00% 8.32% 6.78% 5.07% 15.14% 0.71%
91 to 100 0.00% 0.00% 4.33% 5.56% 6.08% 15.79% 1.20%
MAPE | 33.05% | 33.16% | 29.26% 25.14% 24.45% 50.57% | 36.44%
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Figure 43: NAVSTAR GPS (FA8807-06-C-0001) Accuracy over Time
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Table 63: NAVSTAR GPS (FA8807-06-C-0003) Accuracy Results

Forecasting Model
IMS PD / IDE /

Percent | CPRPD [SPI(t) T.S. [SPI(Y)
Complete | (status *BEI(T.S.) | Regress- | Kalman (T.S)*

Interval quo) IMSPD | * CPI(T.S)] ion Filter IDE BEI (T.S.)]
0to 10 80.56% | 80.56% | 80.08% 72.81% 80.56% | 80.54% | 80.19%
11t020 | 79.66% | 79.66% | 76.61% 76.22% 79.66% | 79.64% | 77.60%
211030 | 41.65% | 41.65% | 32.70% 71.81% 40.12% | 36.37% | 29.45%
31t040 | 36.64% | 36.31% | 25.73% 63.55% 34.22% | 28.27% | 28.13%
41t050 | 36.72% | 36.72% | 30.53% 69.15% 34.86% | 29.06% | 23.17%
51t060 | 36.72% | 36.47% | 13.71% 69.54% 32.04% | 17.10% | 7.92%
61t070 |29.73% |29.73% | 11.12% 65.43% 26.16% | 20.59% | 18.92%
711080 | 2.42% 4.37% 1.05% 14.11% 2.97% | 3.94% 4.02%
81t090 | 0.77% 1.58% 1.32% 22.46% 1.73% | 4.83% 6.57%
91to0 100 | 0.77% 0.19% 1.32% 22.46% 1.73% | 4.83% 6.57%
MAPE 32.89% | 32.69% | 26.14% 56.74% 31.75% | 27.91% | 25.67%
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Figure 44: NAVSTAR GPS (FA8807-06-C-0003) Accuracy over Time
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Table 64: NAVSTAR GPS (FA8807-06-C-0004) Accuracy Results

Forecasting Model
Percent | CPRPD IMSPD/
Complete | (status IMS [SPI(t) Regress- | Kalman
Interval quo) PD (T.S.)*BEI] ion Filter IDE IDE/SPI
0to 10
11to 20
21t030 | 36.35% | 36.35% 35.66% | 62.01% | 36.68% | 27.17% | 26.54%
31t040 | 36.29% | 35.98% 31.05% | 39.65% | 35.99% | 6.32% | 5.43%
41t050 ] 36.08% | 34.05% 25.71% | 49.00% | 35.15% | 21.04% | 18.38%
51t0 60 | 36.08% | 33.08% 9.19% | 47.30% | 28.47% | 17.53% | 14.77%
61t070 | 19.62% | 29.84% 511% | 42.25% | 16.15% | 8.92% | 7.49%
711080 | 12.36% | 21.36% 6.40% | 28.29% | 12.14% | 3.23% | 3.09%
81 to 90 6.35% | 6.16% 451% | 42.78% | 4.35% | 5.82% ] 5.03%
91 to 100 3.18% | 2.78% 0.92% | 18.64% | 1.82% | 3.58% | 2.22%
MAPE | 23.76% | 25.59% 14.92% | 41.47% | 21.75% | 11.66% | 10.33%
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Figure 45: NAVSTAR GPS (FA8807-06-C-0004) Accuracy over Time
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Table 65: GPS OCX (FA8807-08-C-0001) Accuracy Results

Forecasting Model
IMS PD /
Percent [SPI(t) T.S.*
Complete CPR PD BEI(T.S.)* Kalman
Interval (status quo) | IMS PD CPI(T.S))] Regression Filter
0to 10 29.74% 30.39% 31.37% 30.87% | 28.95%
11 to 20 27.76% 28.95% 25.35% 31.50% | 28.94%
2110 30 27.76% 28.16% 20.92% 32.35% | 28.46%
311040
41 to 50 27.76% 25.79% 19.45% 32.83% | 29.03%
51 to 60 27.76% 28.16% 25.57% 29.34% | 29.24%
61to 70 27.76% 28.16% 26.88% 20.85% | 30.33%
71t0 80 17.24% 16.18% 15.16% 18.31% | 17.18%
81 to 90 5.99% 5.99% 6.29% 16.09% | 12.63%
91 to 100 0.00% 0.00% 0.51% 11.41% | 0.35%
MAPE 20.41% 20.49% 18.37% 24.08% | 21.73%
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Figure 46: GPS OCX (FA8807-08-C-0001) Accuracy over Time
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Table 66: GPS OCX (FA8807-08-C-0003) Accuracy Results

Forecasting Model
Percent IMSPD/
Complete CPR PD [SPI(t) *CPI Kalman
Interval (status quo) IMS PD *BEI] Regression Filter
0to 10 36.12% 36.47% 33.94% 6.47% | 36.47%
11to0 20 35.76% 36.47% 26.63% 26.47% | 36.46%
2110 30 35.76% 35.41% 20.84% 22.33% | 35.42%
31to 40 35.76% 33.53% 29.64% 35.90% | 34.58%
41 to 50 35.76% 34.51% 34.05% 40.65% | 35.35%
51 to 60 28.24% 31.71% 31.72% 33.43% | 31.48%
61to 70 21.29% 21.29% 18.75% 27.62% | 19.26%
7110 80 10.59% 14.47% 11.80% 24.22% | 17.26%
81to 90 5.57% 7.14% 5.27% 19.07% | 10.44%
91 to 100 3.88% 6.71% 3.71% 16.07% 4.00%
MAPE 25.71% 26.53% 21.98% 25.88% | 27.18%

CPR PD (status quo) IMS PD / [SPI(t)*CPI*BEI]
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Figure 47: GPS OCX (FA8807-08-C-0003) Accuracy over Time
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Table 67: WGS (FA8808-06-C-0001) Accuracy Results

Forecasting Model

CPR IMS PD IDE /

Percent PD IMS PD | /[SPI(t) [SPI(t)
Complete | (status IMS [[SPI* | (T.S.))* | Regress- | Kalman (T.S)*

Interval quo) PD CPI] CPI] ion Filter IDE CPI]

0to 10 | 44.55% | 44.55% | 46.56% | 56.54% | 23.32% | 43.97% | 44.55% | 56.54%
111020 | 43.44% | 43.44% | 41.37% | 38.03% | 14.65% | 43.68% | 43.44% | 38.03%
21t030 | 43.66% | 42.09% | 39.54% | 39.77% | 33.84% | 41.53% | 39.96% | 37.53%
31t040 | 29.95% | 34.17% | 31.39% | 31.09% | 36.60% | 33.38% | 18.58% | 14.78%
41t050 | 16.58% | 24.53% | 22.79% | 22.38% | 32.36% | 23.97% | 27.94% | 25.90%
51t060 | 21.10% | 24.08% | 22.56% | 22.22% | 28.56% | 23.89% | 18.77% | 17.52%
61to70 | 16.75% | 15.54% | 12.18% | 12.62% | 25.31% | 16.04% | 9.82% | 12.99%
71t080 | 16.75% | 9.84% | 7.11% 6.88% | 22.52% | 13.15% | 8.59% | 10.58%
81t090 | 16.75% | 2.96% | 1.05% 1.42% | 17.49% | 12.01% | 2.96% 1.42%
91t0100 | 16.75% | 0.17% | 2.62% 4.92% 2.35% | 4.62% | 0.17% 4.92%
MAPE | 24.77% | 22.03% | 20.31% | 20.31% | 23.75% | 23.70% | 19.22% | 18.69%
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Figure 48: WGS (FA8808-06-C-0001) Accuracy over Time
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Table 68: WGS (FA8808-10-C-0001) Accuracy Results

Forecasting Model

IMSPD/ IDE /

Percent | CPR PD [SPI(t) [SPI(t)

Complete | (status (T.S)* Kalman (T.S)

Interval quo) IMS PD BEI] Regression Filter IDE *BEI]
0to10| 36.71% | 37.16% 50.90% 20.46% | 36.92% | 37.16% 50.91%
11t020 | 36.73% | 37.86% 51.18% 46.46% | 39.38% | 33.44% 47.71%
21t030| 36.73% | 37.07% 45.94% 53.88% | 42.85% | 27.82% 37.93%
31t040| 36.73% | 36.73% 40.47% 55.18% | 41.40% | 26.18% 30.53%
41t050 | 36.73% | 36.89% 31.69% 51.94% | 35.58% | 21.70% 15.13%
51t060 | 36.73% | 36.73% 29.95% 47.97% | 33.03% | 13.79% 4.58%
61t0 70| 25.28% | 25.28% 18.57% 43.70% | 20.27% 9.01% 1.14%
71t080 | 20.97% | 21.01% 17.61% 38.73% | 16.29% 9.01% 5.44%
81t090 | 12.67% | 12.67% 11.28% 32.71% | 13.44% | 10.75% 9.30%
91 to 100 0.00% 3.41% 3.44% 28.31% 4.22% 3.41% 3.44%
MAPE | 29.33% | 29.70% 30.90% 43.56% | 29.47% | 19.53% 20.45%
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Figure 49: WGS (FA8808-10-C-0001) Accuracy Results
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Table 69: MUOS (N00039-04-C-2009) Accuracy Results

Forecasting Model

Percent CPRPD
Complete | (status IMS PD/ Kalman IDE/

Interval quo) IMSPD | SPI(T.S.) | Regression Filter IDE SPI(T.S.)
Otol0| 31.96% | 28.35% | 27.70% 11.07% | 30.24% | 28.09% | 27.36%
11t020 | 31.96% | 24.75% | 23.89% 20.67% | 30.10% | 15.69% | 14.75%
21t030 | 31.96% | 22.90% | 22.28% 26.06% | 29.95% | 10.99% | 10.24%
31t040 | 31.96% | 23.27% | 21.81% 33.33% | 29.21% 7.96% 8.49%
41t050 | 25.92% | 22.24% | 21.89% 31.48% | 23.88% 2.07% 2.23%
51t060 | 16.36% | 19.42% | 18.55% 30.32% 7.02% 7.24% 7.65%
61to 70 | 15.05% 3.40% 3.17% 29.13% 0.94% 3.27% 3.12%
7110 80 9.82% 2.71% 2.23% 25.74% 0.89% 4.41% 4.27%
81 to 90 3.07% 1.75% 1.91% 21.23% 0.89% 7.11% 7.39%
91 to 100 2.03% 1.91% 2.03% 15.94% 3.79% 0.01% 0.12%
MAPE | 19.23% | 14.47% | 13.97% 24.81% | 14.92% 7.96% 7.87%
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Figure 50: MUQOS (N00039-04-C-2009) Accuracy over Time
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Table 70: AEHF (F04701-02-C-0002) Accuracy Results

Forecasting Model
Percent IMSPD/
Complete CPRPD [SPI(t) Kalman
Interval (status quo) | IMS PD *CPI] Regression Filter
0to 10 47.40% 47.40% 46.64% 60.90% 47.25%
11 to 20 46.87% 46.87% 44.51% 58.22% 46.25%
21to0 30 40.90% 40.90% 36.14% 37.23% 39.96%
311040 30.92% 30.92% 23.53% 43.52% 29.73%
41 to 50 30.61% 30.61% 21.55% 44.35% 29.52%
51 to 60 24.66% 24.66% 19.68% 30.87% 25.94%
61to 70 16.50% 16.50% 18.42% 24.97% 22.65%
7110 80 13.19% 13.19% 15.16% 12.18% 13.17%
81t0 90 6.02% 6.02% 6.56% 5.37% 7.98%
91 to 100 2.36% 2.36% 5.93% 6.03% 2.98%
MAPE 25.66% 25.66% | 23.09% 31.72% 26.32%
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Figure 51: AEHF (F04701-02-C-0002) Accuracy Results over Time
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Table 71: SBIRS (F04701-95-C-0017) Accuracy Results

Forecasting Model
IMSPD/
Percent CPR PD [SPI(t)

Complete | (status IMS (T.S.) *BEI IDE/ Kalman
Interval quo) PD IDE (T.S)] SPI Regression Filter
0to 10 50.61% | 50.61% | 50.61% 49.98% | 50.26% 57.67% | 50.34%
11 to0 20 46.45% | 46.45% | 46.45% 45.83% | 45.78% 63.40% | 45.96%
2110 30 37.54% | 37.54% | 37.54% 36.88% | 36.69% 60.71% | 36.61%
31to0 40 31.33% | 31.33% | 31.33% 26.14% | 30.60% 39.21% | 30.55%
41to 50 24.85% | 24.85% | 24.85% 13.54% | 24.60% 29.83% | 24.93%
51 to 60 16.83% | 16.89% | 16.19% 5.61% | 16.07% 30.62% | 17.21%
61to 70 11.04% | 10.67% 3.10% 1.75% | 3.87% 20.49% | 10.87%
71to0 80 2.50% | 4.85% 3.38% 6.88% | 3.66% 8.17% 3.94%
81t0 90 0.14% | 0.04% 7.94% 10.71% | 8.07% 8.93% 0.27%

91 to 100
MAPE 24.63% | 24.84% | 24.60% 21.88% | 24.40% 35.60% | 24.56%

CPR PD (status quo) IMS PD / [SPI(t) (T.S.)*BEI (T.S.)]
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Figure 52: SBIRS (F04701-95-C-0017) Accuracy Results over Time
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Appendix D: Regression Analysis Outputs

Whole Model

Regression
35%

30%

25%

(Status Quo

20%

T T T T T T T T
0%50% 150% 250% 350% 450%
Sched Growt

Actual by Predicted Plot
35%

30%

25%

CPR PD (Statu
Quo) Actu

20%

T T
25% 30% 35%

CPR PD (Status Quo) Predicte
P=0.0061 RSg=0.63 RMSE=0.0

T
20%

Summary of Fit

RSquare 0.629764
RSquare Adj 0.583485
Root Mean Square Error 0.029958
Mean of Response 0.25944
Observations (or Sum Wgts 10

Analysis of Variance

Sum of
Source DF Squares Mean Square F Ratio
Model 1 0.01221240 0.012212 13.6078
Error 8 0.00717962 0.000897 Prob >F
C. Tota 9 0.01939202 0.0061 *

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t] Std Beta
Intercept 0.3436491 0.024715 13.90 <.0001 * 0
Reciprocal(Sched Growth -0.06037 0.016365 -3.69 0.0061 * -0.79358

Figure 53: Regression Output - CPR PD (status quo)
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Figure 54: Leverage Plot - CPR PD (status quo)
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Figure 55: Residual Plot - CPR PD (status quo)

151



Overlay Plot

0.25
. l
0.2
§8 ]
23 0415+
Es ]
a2 014
n E 4
X
S 0.05
(G R R
®] 0 4 .
| | | | |
0 2 4 6 8 10 12

Row

Figure 56: Cook's D - CPR PD (status quo)

Distributions
Residual CPR PD (Status Quo)

—

==

/
/]
- N |

-0.04 -0.02 0 0.02 0.04 0.06

—— Normal(2.8e-

Fitted Normal

Goodness-of-Fit Test
Shapiro-Wilk W
W  Prob<W
0.930221 0.4501

Note: Ho = The data is from the Normal distribution. Small p-values
reject Ho.

Figure 57: Residuals Histogram & Shapiro-Wilk Normality Test (CPR PD)
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Distributions
Studentized Resid CPR PD (Status Quo)

e

-5 1 -05 0 05 1 15 2

Quantiles

100.0 maximu 1.71413
99.5% 1.71413
97.5% 1.71413
90.0% 1.69343

75.0% quartile 0.88753
50.0% median -0.1552
25.0% quartile -0.7758

10.0% -1.3554
2.5% -1.4061
0.5% -1.4061

0.0% minimum -1.4061

Summary Statistics

Mean -0.006231
Std Dev 1.023461
Std Err Mean 0.3236468
Upper 95% Mea 0.7259084
Lower 95% Mea -0.738371
N 10

Figure 58: Studentized Residuals Check for Outliers (CPR PD)

Table 72: Breusch-Pagan Test for Heteroscedasticity (CPR PD)

N 10
Degrees of Freedom model 1
Sum of Squared Errors (SSE) 0.007180
Sum of Squared Residuals (SSR) 8.09E-08
Breusch-Pagan Test Statistic 0.0784
Breusch-Pagan Test p-value 0.7794
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Distributions
APE

=

T
0 0.05 0.1 0.15

Quantiles

100.0 maximu 0.16452
99.5% 0.16452
97.5% 0.16452
90.0% 0.1638

75.0% quartile 0.13246
50.0% median 0.07885
25.0% quartile 0.01887

10.0% 0.00197
2.5% 0.00019
0.5% 0.00019

0.0% minimum 0.00019

Summary Statistics

Mean 0.0829375
Std Dev 0.0584632
Std Err Mean 0.0184877
Upper 95% Mea 0.1247595
Lower 95% Mea 0.0411155
N 10

Figure 59: MAPE - CPR PD (status quo)
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Whole Model

Regression Plot
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All Contracts Predicte
P=0.0094 RSg=0.59 RMSE=0.03

Summary of Fit

RSquare 0.590317
RSquare Adj 0.539106
Root Mean Square Error 0.032981
Mean of Response 0.21527
Observations (or Sum Wgts 10

Analysis of Variance

Sum of
Source DF Squares Mean Square F Ratio
Model 1 0.01253868 0.012539 11.5273
Error 8 0.00870192 0.001088 Prob>F
C. Tota 9 0.02124060 0.0094 *

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t| Std Beta

Intercept 0.232975 0.011661 19.98 <.0001 * 0
OTB & Sched Growt  -0.088525 0.026074 -3.40 0.0094 * -0.76832

Figure 60: Regression Output (IMS MAPES)
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Figure 61: Leverage Plot (IMS MAPES)
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Figure 62: Residuals Plot (IMS MAPES)

156



Overlay Plot

0.35
0.3
2 0.25 -
S5
28 024
£2 015
o Q :
09 014
x —_—
s < 005
o 0 -
-0.05 T T T T T
0 2 4 6 8 10 12

Row

Figure 63: Cook's D (IMS Model MAPES)

Distributions
Residual All Contracts

==
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—— Normal(2.8e-
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Goodness-of-Fit Test
Shapiro-Wilk W
W  Prob<wW
0.975988 0.9402

Note: Ho = The data is from the Normal distribution. Small p-values
reject Ho.

Figure 64: Residuals Histogram & Shapiro-Wilk Normality Test (IMS MAPEsS)
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Distributions
Studentized Residual All Contracts

=

-

— 1T T T 1T T 1
2-15-1-050 05 1 15 2 25

Quantiles

100.0 maximu 2.00076
99.5% 2.00076
97.5% 2.00076
90.0% 1.89282

75.0% quartile 0.67826
50.0% median -0.1355
25.0% quartile -0.5867

10.0% -1.5343
2.5% -1.5972
0.5% -1.5972

0.0% minimum -1.5972
Summary Statistics

Mean 4.441e-17
Std Dev 1.0098633
Std Err Mean 0.3193468
Upper 95% Mea 0.7224127
Lower 95% Mea -0.722413
N 10

Figure 65: Studentized Residuals Check for Outliers (IMS MAPES)

Table 73: Breusch-Pagan Test for Heteroscedasticity (IMS MAPES)

N 10
Degrees of Freedom model 1
Sum of Squared Errors (SSE) 0.008702
Sum of Squared Residuals (SSR) 1.80E-06
Breusch-Pagan Test Statistic 1.1885
Breusch-Pagan Test p-value 0.2756
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Distributions
APE

—

H=—

0 005 01 015 0.2 025 03

Quantiles

100.0 maximu 0.26824
99.5% 0.26824
97.5% 0.26824
90.0% 0.26236

75.0% quartile 0.16268
50.0% median 0.06904
25.0% quartile 0.03346

10.0% 0.01127
2.5% 0.00899
0.5% 0.00899

0.0% minimum 0.00899

Summary Statistics

Mean 0.1006363
Std Dev 0.0839424
Std Err Mean 0.0265449
Upper 95% Mea 0.1606851
Lower 95% Mea 0.0405876
N 10

Figure 66: MAPE for Predicting IMS Model Accuracy
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Whole Model

Regression Plot
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RSq=0.86 RMSE=0.029
Summary of Fit
RSquare 0.855006
RSquare Adj 0.826007
Root Mean Square Error 0.029602
Mean of Response 0.187057
Observations (or Sum Wgts 7

Analysis of Variance

Sum of
Source DF Squares Mean Square F Ratio
Model 1 0.02583553 0.025836 29.4841
Error 5 0.00438127 0.000876 Prob>F
C. Tota 6 0.03021680 0.0029 *

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|
Intercept 0.22548 0.013238 17.03 <.0001 *
OTB & Sched Growt -0.13448 0.024766 -5.43 0.0029 *

Figure 67: Regression Output (IDE MAPES)
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Figure 68: Leverage Plot (IDE MAPEsS)
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Figure 69: Residuals Plot (IDE MAPES)
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Figure 70: Cook's D (IDE MAPES)

Distributions
Residual IDE Data
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Note: Ho = The data is from the Normal distribution. Small p-values
reject Ho.

Figure 71: Residuals Histogram & Shapiro-Wilk Normality Test (IDE MAPEs)
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Distributions
Studentized Resid IDE Data

H ———

T
-5 1 05 0 05 1 1.5

Quantiles

100.0 maximu 1.17916
99.5% 1.17916
97.5% 1.17916
90.0% 1.17916

75.0% quartile 0.71837
50.0% median 0.58763
25.0% quartile -1.1399

10.0% -1.4571
2.5% -1.4571
0.5% -1.4571

0.0% minimum -1.4571

Summary Statistics

Mean -6.34e-17
Std Dev 1.041552
Std Err Mean 0.3936696
Upper 95% Mea 0.9632749
Lower 95% Mea -0.963275
N 7

Figure 72: Studentized Residuals Check for Outliers (IDE MAPES)

Table 74: Breusch-Pagan Test for Heteroscedasticity (IDE MAPEsS)

N 7
Degrees of Freedom model 1
Sum of Squared Errors (SSE) 0.004381
Sum of Squared Residuals (SSR) 6.31E-07
Breusch-Pagan Test Statistic 0.8050
Breusch-Pagan Test p-value 0.3696
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Distributions
APE

—

[ ———

0.075 0.1 0.1250.150.175 0.2 0.225

Quantiles

100.0 maximu 0.20642
99.5% 0.20642
97.5% 0.20642
90.0% 0.20642

75.0% quartile 0.15629
50.0% median 0.12162
25.0% quartile 0.07779

10.0% 0.0759
2.5% 0.0759
0.5% 0.0759

0.0% minimum 0.0759

Summary Statistics

Mean 0.1302323
Std Dev 0.0465021
Std Err Mean 0.0175762
Upper 95% Mea 0.1732396
Lower 95% Mea  0.087225
N 7

Figure 73: MAPE for Predicting IDE Model Accuracy
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Whole Model
Regression Plot
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Summary of Fit

RSquare 0.551606

RSquare Adj 0.495557
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Sum of

Source DF Squares Mean Square F Ratio
Model 1 0.00391446 0.003914 9.8415
Error 8 0.00318201 0.000398 Prob > F
C. Tota 9 0.00709648 0.0139 *

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t| Std Beta
Intercept  0.0342875 0.007051 4.86 0.0013* 0
10TBD 0.0494625 0.015767 3.14 0.0139 * 0.742702

Figure 74: Regression Output (IMS MAPE Delta)

165



10TB DV

Leverage Plot

0.08
0.06

0.04

0.02

IMS Delt
Leverage Residual

0.00 4

T T T T T T
-0.2 00 02 04 06 08 10 1.2
1 OTB DV Leverage, P=0.013

Figure 75: Leverage Plot (IMS MAPE Delta)
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Figure 76: Residuals Plot (IMS MAPE Delta)
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Figure 77: Cook's D (IMS MAPE Delta)
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Figure 78: Residuals Histogram & Shapiro-Wilk Test (IMS MAPE Delta)
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Distributions
Studentized Resid IMS Delta

Quantiles

100.0 maximu 1.78029
99.5% 1.78029
97.5% 1.78029
90.0% 1.70042

75.0% quartile 0.65999
50.0% median -0.0841
25.0% quartile -0.5313

10.0% -1.7961
2.5% -1.913
0.5% -1.913

0.0% minimum -1.913

Summary Statistics

Mean -1.22e-16
Std Dev 1.0130289
Std Err Mean 0.3203479
Upper 95% Mea 0.7246773
Lower 95% Mea -0.724677
N 10

Figure 79: Studentized Residuals Check for Outliers (IMS MAPE Delta)

Table 75: Breusch-Pagan Test for Heteroscedasticity (IMS MAPE Delta)

N 10
Degrees of Freedom model 1
Sum of Squared Errors (SSE) 0.003182
Sum of Squared Residuals (SSR) 2.20E-07
Breusch-Pagan Test Statistic 1.0859
Breusch-Pagan Test p-value 0.2974
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Distributions

APE
Quantiles
100.0 maximu 25.4911
99.5% 25.4911
97.5% 25.4911
90.0% 23.01

75.0% quartile 0.53922
50.0% median 0.28822
25.0% quartile 0.07527

10.0% 0.05322
2.5% 0.0526
0.5% 0.0526

0.0% minimum 0.0526
Summary Statistics

Mean 2.8011834
Std Dev 7.9749034
Std Err Mean 2.5218859
Upper 95% Mea 8.5060855
Lower 95% Mea -2.903719
N 10

Figure 80: MAPE for Predicting the Accuracy Delta (IMS Models - CPR PD)
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Sum of
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Max RSq

0.8390

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t| Std Beta VIF
Intercept 0.0540235 0.009417 5.74 0.0046 * 0 .
Sched Growth <.6  0.0510412 0.013318 3.83 0.0186 * 0.77391 1.0084034
10TB DV 0.0306059 0.014589 210 0.1039 0.423627 1.0084034

Figure 81: Regression Output #1 (IDE MAPE Delta)
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Figure 82: Leverage Plots (IDE MAPE Delta)
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Figure 83: Residuals Plot (IDE MAPE Delta)

171



Overlay Plot

0.5

[9) 0.4 4
[
% -
E E 0.3
o i

w 02 4
<0 ]
8
3 0.1

0 T T T T T
0 2 4 6 8 10 12

Row

Figure 84: Cook's D (IDE MAPE Delta)
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Figure 85: Residuals Histogram & Shapiro-Wilk Test (IDE MAPE Delta)
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Distributions
Studentized Resid IDE Delta

Quantiles

100.0 maximu 1.25275
99.5% 1.25275
97.5% 1.25275
90.0% 1.25275

75.0% quartile 0.64089
50.0% median 0.13286
25.0% quartile  -0.538

10.0% -1.8112
2.5% -1.8112
0.5% -1.8112

0.0% minimum -1.8112
Summary Statistics

Mean 0.001281
Std Dev 0.9832768
Std Err Mean 0.3716437
Upper 95% Mea 0.9106603
Lower 95% Mea -0.908098
N 7

Figure 86: Studentized Residuals Check for Outliers (IDE MAPE Delta)

Table 76: Breusch-Pagan Test for Heteroscedasticity (IDE MAPE Delta)

N 7
Degrees of Freedom model 2
Sum of Squared Errors (SSE) 0.001206
Sum of Squared Residuals (SSR) 3.12E-08
Breusch-Pagan Test Statistic 0.5254
Breusch-Pagan Test p-value 0.7690
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Distributions

APE
Quantiles
100.0 maximu 0.95737
99.5% 0.95737
97.5% 0.95737
90.0% 0.95737

75.0% quartile 0.25279
50.0% median 0.07513
25.0% quartile 0.01594

10.0% 0.01021
2.5% 0.01021
0.5% 0.01021

0.0% minimum 0.01021
Summary Statistics

Mean 0.2137253
Std Dev 0.3377619
Std Err Mean 0.127662

Upper 95% Mea 0.5261029
Lower 95% Mea -0.098652
N 7

Figure 87: MAPE for Predicting the Accuracy Delta (IDE - CPR PD)
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Sum of
Source DF Squares Mean Square F Ratio
Model 1 0.00492354 0.004924 9.7184
Error 5 0.00253311 0.000507 Prob>F
C. Tota 6 0.00745666 0.0263 *

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t| Std Beta

Intercept 0.061675 0.011254 5.48 0.0028 * 0
Sched Growth <.6  0.0535917 0.017191 3.12 0.0263 * 0.812581

Figure 88: Regression Output #2 (IDE MAPE Delta)
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Figure 89: Leverage Plot (IDE MAPE Delta)
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Figure 90: Residuals Plot (IDE MAPE Delta)
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Figure 91: Cook's D (IDE MAPE Delta)
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Figure 92: Residuals Histogram & Shapiro-Wilk Test (IDE MAPE Delta)
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Distributions
Studentized Resid IDE Delta

Quantiles

100.0 maximu 1.2479
99.5% 1.2479
97.5% 1.2479
90.0% 1.2479

75.0% quartile 1.03566
50.0% median -0.0449
25.0% quartile -0.945

10.0% -1.7481
2.5% -1.7481
0.5% -1.7481

0.0% minimum -1.7481

Summary Statistics

Mean 2.548e-16
Std Dev 1.0712903
Std Err Mean 0.4049097
Upper 95% Mea 0.9907783
Lower 95% Mea -0.990778
N 7

Figure 93: Studentized Residuals Check for Outliers (IDE MAPE Delta)

Table 77: Breusch-Pagan Test for Heteroscedasticity (IDE MAPE Delta)

N 7
Degrees of Freedom model 1
Sum of Squared Errors (SSE) 0.002533
Sum of Squared Residuals (SSR) 1.02E-07
Breusch-Pagan Test Statistic 0.3910
Breusch-Pagan Test p-value 0.5318
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Distributions

APE
Quantiles
100.0 maximu 1.2346
99.5% 1.2346
97.5% 1.2346
90.0% 1.2346

75.0% quartile 0.28285
50.0% median 0.14696
25.0% quartile 0.01467

10.0% 0.01439
2.5% 0.01439
0.5% 0.01439

0.0% minimum 0.01439

Summary Statistics

Mean 0.2875121
Std Dev 0.4280136
Std Err Mean 0.1617739
Upper 95% Mea 0.6833586
Lower 95% Mea -0.108334
N 7

Figure 94: MAPE for Predicting the Accuracy Delta (IDE - CPR PD)
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Whole Model
Actual by Predicted Plot
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Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t| Std Beta VIF
Intercept 0.0135335 0.005589 242 0.0727 0 .
Log(Cost Growth  -0.025682 0.003 -8.56 0.0010 * -1.03864 1.1412582
10TB DV 0.0264452 0.01038 2.55 0.0635 0.309075 1.1412582

Residual by Predicted Plot
0.015

0.010
0.005
0.000

-0.005 H

Delta Residu

-0.010

-0.015

T T
5.00% 10.00%

T |
-5.00% 0.00%
IDE - IMS Delta Predicte

Figure 95: Regression Output (IDE - IMS MAPE Delta)
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Figure 96: Residuals Histogram & Shapiro-Wilk Test (IDE - IMS Delta)

Distributions
Studentized Resid IDE - IMS Delta

Quantiles

100.0 maximu 1.29452
99.5% 1.29452
97.5% 1.29452
90.0% 1.29452
75.0% quartile 0.9818
50.0% median 0.09588
25.0% quartile -1.3398
10.0% -1.3669
2.5% -1.3669
0.5% -1.3669
0.0% minimum -1.3669

Summary Statistics

Mean 0.0017571
Std Dev 1.0422086
Std Err Mean 0.3939178
Upper 95% Mea 0.9656394
Lower 95% Mea -0.962125
N 7

Figure 97: Studentized Residuals Check for Outliers (IDE - IMS Delta)
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Table 78: Breusch-Pagan Test for Heteroscedasticity (IDE - IMS Delta)

N 7
Degrees of Freedom model 2
Sum of Squared Errors (SSE) 0.000540
Sum of Squared Residuals (SSR) 1.66E-08
Breusch-Pagan Test Statistic 1.4008
Breusch-Pagan Test p-value 0.4964

Distributions
APE

Quantiles

100.0 maximu 0.9175
99.5% 0.9175
97.5% 0.9175
90.0% 0.9175
75.0% quartile 0.78846
50.0% median 0.20431
25.0% quartile 0.07495

10.0% 0.01653
2.5% 0.01653
0.5% 0.01653
0.0% minimum 0.01653

Summary Statistics

Mean 0.3697272
Std Dev 0.3636007
Std Err Mean 0.1374282
Upper 95% Mea 0.7060018
Lower 95% Mea 0.0334526
N 7

Figure 98: MAPE for Predicting the Accuracy Delta (IDE - IMS MAPE)
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